Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Truncation mutations abolish chromatin-associated activities of adenomatous polyposis coli

Abstract

The adenomatous polyposis coli (APC) is a tumor suppressor whose loss of function leads to colon cancer. APC shuttles between the nucleus and cytoplasm, however its role in the nucleus remains elusive. We have found that nuclear APC specifically associates with transcriptionally active chromatin through structural elements located downstream to the region of frequent truncation mutations found in colorectal tumors. We show that a recombinant APC fragment comprising such elements associates in vivo with euchromatin and preferentially binds in vitro to acetylated histone H3. Induction of DNA double-strand breaks (DSB) stimulates accumulation of APC at the damaged DNA chromatin marked by histone H2AX and S139-phosphorylated histone H2AX. A nuclear complex containing the DNA-dependent protein kinase catalytic subunit (DNAPKcs) and APC associates with chromatin in response to DNA DSB. APC knockdown with siRNA decreased the rate of DNA DSB-induced S139 histone H2AX phosphorylation in cells expressing endogenous full-length APC, but not in colon cancer cells with its truncation mutants, whereas ectopic APC expression stimulated the H2AX phosphorylation regardless of the type of endogenous APC. Our data suggest that APC involves in the DSB DNA repair and that truncation mutations impair chromatin-associated functions of APC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Akiyama T, Kawasaki Y . (2006). Wnt signalling and the actin cytoskeleton. Oncogene 25: 7538–7544.

    Article  CAS  PubMed  Google Scholar 

  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114: 359–370.

    Article  CAS  PubMed  Google Scholar 

  • Bienz M . (2002). The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol 3: 328–338.

    Article  CAS  PubMed  Google Scholar 

  • Brocardo M, Nathke IS, Henderson BR . (2005). Redefining the subcellular location and transport of APC: new insights using a panel of antibodies. EMBO Rep 6: 184–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burma S, Chen DJ . (2004). Role of DNA-PK in the cellular response to DNA double-strand breaks. DNA Repair (Amst) 3: 909–918.

    Article  CAS  Google Scholar 

  • Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA et al. (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114: 371–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deka J, Herter P, Sprenger-Haussels M, Koosch S, Franz D, Muller KM et al. (1999). The APC protein binds to A/T rich DNA sequences. Oncogene 18: 5654–5661.

    Article  CAS  PubMed  Google Scholar 

  • Dempke W, Voigt W, Grothey A, Hill BT, Schmoll HJ . (2000). Cisplatin resistance and oncogenes - a review. Anticancer Drugs 11: 225–236.

    Article  CAS  PubMed  Google Scholar 

  • Fagman H, Larsson F, Arvidsson Y, Meuller J, Nordling M, Martinsson T et al. (2003). Nuclear accumulation of full-length and truncated adenomatous polyposis coli protein in tumor cells depends on proliferation. Oncogene 22: 6013–6022.

    Article  CAS  PubMed  Google Scholar 

  • Faux MC, Ross JL, Meeker C, Johns T, Ji H, Simpson RJ et al. (2004). Restoration of full-length adenomatous polyposis coli (APC) protein in a colon cancer cell line enhances cell adhesion. J Cell Sci 117: 427–439.

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A . (2004). H2AX: the histone guardian of the genome. DNA Repair (Amst) 3: 959–967.

    Article  CAS  Google Scholar 

  • Fodde R, Smits R, Clevers H . (2001). APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer 1: 55–67.

    Article  CAS  PubMed  Google Scholar 

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA . (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Furuta T, Takemura H, Liao ZY, Aune GJ, Redon C, Sedelnikova OA et al. (2003). Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem 278: 20303–20312.

    Article  CAS  PubMed  Google Scholar 

  • Gaasenbeek M, Howarth K, Rowan AJ, Gorman PA, Jones A, Chaplin T et al. (2006). Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers. Cancer Res 66: 3471–3479.

    Article  CAS  PubMed  Google Scholar 

  • Gounari F, Chang R, Cowan J, Guo Z, Dose M, Gounaris E et al. (2005). Loss of adenomatous polyposis coli gene function disrupts thymic development. Nat Immunol 6: 800–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green RA, Kaplan KB . (2003). Chromosome instability in colorectal tumor cells is associated with defects in microtubule plus-end attachments caused by a dominant mutation in APC. J Cell Biol 163: 949–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R et al. (2003). The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113: 357–367.

    Article  CAS  PubMed  Google Scholar 

  • Henderson BR . (2000). Nuclear-cytoplasmic shuttling of APC regulates β-catenin subcellular localization and turnover. Nat Cell Biol 2: 653–660.

    Article  CAS  PubMed  Google Scholar 

  • Henderson BR, Fagotto F . (2002). The ins and outs of APC and β-catenin nuclear transport. EMBO Rep 3: 834–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermsen M, Postma C, Baak J, Weiss M, Rapallo A, Sciutto A et al. (2002). Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology 123: 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  • Homfray TF, Cottrell SE, Ilyas M, Rowan A, Talbot IC, Bodmer WF et al. (1998). Defects in mismatch repair occur after APC mutations in the pathogenesis of sporadic colorectal tumours. Hum Mutat 11: 114–120.

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro K, Yoshida T, Yagishita H, Numata Y, Okayasu T . (2006). Epithelial and stromal genetic instability contributes to genesis of colorectal adenomas. Gut 55: 695–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimbo T, Kawasaki Y, Koyama R, Sato R, Takada S, Haraguchi K et al. (2002). Identification of a link between the tumour suppressor APC and the kinesin superfamily. Nat Cell Biol 4: 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Joslyn G, Richardson DS, White R, Alber T . (1993). Dimer formation by an N-terminal coiled coil in the APC protein. Proc Natl Acad Sci USA 90: 11109–11113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, Glass CK et al. (2006). A topoisomerase IIβ-mediated dsDNA break required for regulated transcription. Science 312: 1798–1802.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y et al. (2000). Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289: 1194–1197.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Sagara M, Shibata Y, Shirouzu M, Yokoyama S, Akiyama T . (2007). Identification and characterization of Asef2, a guanine-nucleotide exchange factor specific for Rac1 and Cdc42. Oncogene 26: 7620–7627.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki Y, Sato R, Akiyama T . (2003). Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat Cell Biol 5: 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Khanna KK, Jackson SP . (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Kinzler KW, Vogelstein B . (1996). Lessons from hereditary colorectal cancer. Cell 87: 159–170.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa H, Fujiki R, Yoshimura K, Mezaki Y, Uematsu Y, Matsui D et al. (2003). The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113: 905–917.

    Article  CAS  PubMed  Google Scholar 

  • Kouzmenko AP, Takeyama K, Ito S, Furutani T, Sawatsubashi S, Maki A et al. (2004). Wnt/β-catenin and estrogen signaling converge in vivo. J Biol Chem 279: 40255–40258.

    Article  CAS  PubMed  Google Scholar 

  • Kouzmenko AP, Takeyama K, Kawasaki Y, Akiyama T, Kato S . (2008). Ligand-dependent interaction between estrogen receptor α and adenomatous polyposis coli. Genes Cells (in press).

  • Lee KK, Workman JL . (2007). Histone acetyltransferase complexes: one size doesn’t fit all. Nat Rev Mol Cell Biol 8: 284–295.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Nathke IS . (2005). Tumor-associated NH2-terminal fragments are the most stable part of the adenomatous polyposis coli protein and can be regulated by interactions with COOH-terminal domains. Cancer Res 65: 5195–5204.

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Stevens J, Rote CA, Yost HJ, Hu Y, Neufeld KL et al. (2001). Siah-1 mediates a novel β-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell 7: 927–936.

    Article  CAS  PubMed  Google Scholar 

  • Memezawa A, Takada I, Takeyama K, Igarashi M, Ito S, Aiba S et al. (2007). Id2 gene-targeted crosstalk between Wnt and retinoid signaling regulates proliferation in human keratinocytes. Oncogene 26: 5038–5045.

    Article  CAS  PubMed  Google Scholar 

  • Mogensen MM, Tucker JB, Mackie JB, Prescott AR, Nathke IS . (2002). The adenomatous polyposis coli protein unambiguously localizes to microtubule plus ends and is involved in establishing parallel arrays of microtubule bundles in highly polarized epithelial cells. J Cell Biol 157: 1041–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison AJ, Shen X . (2005). DNA repair in the context of chromatin. Cell Cycle 4: 568–571.

    Article  CAS  PubMed  Google Scholar 

  • Murr R, Vaissiere T, Sawan C, Shukla V, Herceg Z . (2007). Orchestration of chromatin-based processes: mind the TRRAP. Oncogene 26: 5358–5372.

    Article  CAS  PubMed  Google Scholar 

  • Nathke I . (2006). Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat Rev Cancer 6: 967–974.

    Article  PubMed  Google Scholar 

  • Nathke IS . (2004). The adenomatous polyposis coli protein: the Achilles heel of the gut epithelium. Annu Rev Cell Dev Biol 20: 337–366.

    Article  PubMed  Google Scholar 

  • Neufeld KL, Zhang F, Cullen BR, White RL . (2000). APC-mediated downregulation of β-catenin activity involves nuclear sequestration and nuclear export. EMBO Rep 1: 519–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtake F, Baba A, Takada I, Okada M, Iwasaki K, Miki H et al. (2007). Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 446: 562–566.

    Article  CAS  PubMed  Google Scholar 

  • Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K et al. (2003). Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423: 545–550.

    Article  CAS  PubMed  Google Scholar 

  • Osley MA, Shen X . (2006). Altering nucleosomes during DNA double-strand break repair in yeast. Trends Genet 22: 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. (2006). Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 25: 3986–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pommier Y . (2006). Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6: 789–802.

    Article  CAS  PubMed  Google Scholar 

  • Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN et al. (1992). APC mutations occur early during colorectal tumorigenesis. Nature 359: 235–237.

    Article  CAS  PubMed  Google Scholar 

  • Rosin-Arbesfeld R, Townsley F, Bienz M . (2000). The APC tumour suppressor has a nuclear export function. Nature 406: 1009–1012.

    Article  CAS  PubMed  Google Scholar 

  • Schneikert J, Grohmann A, Behrens J . (2007). Truncated APC regulates the transcriptional activity of β-catenin in a cell cycle dependent manner. Hum Mol Genet 16: 199–209.

    Article  CAS  PubMed  Google Scholar 

  • Shibata H, Toyama K, Shioya H, Ito M, Hirota M, Hasegawa S et al. (1997). Rapid colorectal adenoma formation initiated by conditional targeting of the Apc gene. Science 278: 120–123.

    Article  CAS  PubMed  Google Scholar 

  • Shih IM, Zhou W, Goodman SN, Lengauer C, Kinzler KW, Vogelstein B . (2001). Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res 61: 818–822.

    CAS  PubMed  Google Scholar 

  • Sierra J, Yoshida T, Joazeiro CA, Jones KA . (2006). The APC tumor suppressor counteracts β-catenin activation and H3K4 methylation at Wnt target genes. Genes Dev 20: 586–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Squatrito M, Gorrini C, Amati B . (2006). Tip60 in DNA damage response and growth control: many tricks in one HAT. Trends Cell Biol 16: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Steffensen IL, Schut HA, Alexander J . (2005). Age at exposure and Apc status influence the levels of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-DNA adducts in mouse intestine and liver. Mutat Res 587: 73–89.

    Article  CAS  PubMed  Google Scholar 

  • Steffensen IL, Schut HA, Nesland JM, Tanaka K, Alexander J . (2006). Role of nucleotide excision repair deficiency in intestinal tumorigenesis in multiple intestinal neoplasia (Min) mice. Mutat Res 611: 71–82.

    Article  CAS  PubMed  Google Scholar 

  • Strom A, Bonal C, Ashery-Padan R, Hashimoto N, Campos ML, Trumpp A et al. (2007). Unique mechanisms of growth regulation and tumor suppression upon Apc inactivation in the pancreas. Development 134: 2719–2725.

    Article  CAS  PubMed  Google Scholar 

  • Tighe A, Johnson VL, Taylor SS . (2004). Truncating APC mutations have dominant effects on proliferation, spindle checkpoint control, survival and chromosome stability. J Cell Sci 117: 6339–6353.

    Article  CAS  PubMed  Google Scholar 

  • van Attikum H, Gasser SM . (2005). The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6: 757–765.

    Article  CAS  PubMed  Google Scholar 

  • Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J et al. (2006). A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodeling. Nature 442: 86–90.

    Article  CAS  PubMed  Google Scholar 

  • Xiao JH, Ghosn C, Hinchman C, Forbes C, Wang J, Snider N et al. (2003). Adenomatous polyposis coli (APC)-independent regulation of β-catenin degradation via a retinoid X receptor-mediated pathway. J Biol Chem 278: 29954–29962.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa J, Kitagawa H, Yanagida M, Wada O, Ogawa S, Nakagomi M et al. (2002). Nuclear receptor function requires a TFTC-type histone acetyl transferase complex. Mol Cell 9: 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, White RL, Neufeld KL . (2001). Cell density and phosphorylation control the subcellular localization of adenomatous polyposis coli protein. Mol Cell Biol 21: 8143–8156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor AW Burgess (Ludwig Institute for Cancer Research, Melbourne Branch) for critical reading of the paper and members of the Department of Nuclear Signaling for constructive discussions, advice and support. This study was funded in part by the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN) and priority areas from the Ministry of Education, Culture, Sports, Science and Technology (to SK), and by the Kato Nuclear Complex Project grant from the Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A P Kouzmenko or S Kato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouzmenko, A., Takeyama, K., Kawasaki, Y. et al. Truncation mutations abolish chromatin-associated activities of adenomatous polyposis coli. Oncogene 27, 4888–4899 (2008). https://doi.org/10.1038/onc.2008.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.127

Keywords

This article is cited by

Search

Quick links