Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Multiple facets of junD gene expression are atypical among AP-1 family members

Abstract

JunD is a versatile AP-1 transcription factor that can activate or repress a diverse collection of target genes. Precise control of junD expression and JunD protein–protein interactions modulate tumor angiogenesis, cellular differentiation, proliferation and apoptosis. Molecular and clinical knowledge of two decades has revealed that precise JunD activity is elaborated by interrelated layers of constitutive transcriptional control, complex post-transcriptional regulation and a collection of post-translational modifications and protein–protein interactions. The stakes are high, as inappropriate JunD activity contributes to neoplastic, metabolic and viral diseases. This article deconvolutes multiple layers of control that safeguard junD gene expression and functional activity. The activity of JunD in transcriptional activation and repression is integrated into a regulatory network by which JunD exerts a pivotal role in cellular growth control. Our discussion of the JunD regulatory network integrates important open issues and posits new therapeutic targets for the neoplastic, metabolic and viral diseases associated with JunD/AP-1 expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abdelhaleem M . (2003). The actinomycin D-induced apoptosis in BCR-ABL-positive K562 cells is associated with cytoplasmic translocation and cleavage of RNA helicase A. Anticancer Res 23: 485–490.

    CAS  PubMed  Google Scholar 

  • Adler V, Unlap T, Kraft AS . (1994). A peptide encoding the c-Jun delta domain inhibits the activity of a c-jun amino-terminal protein kinase. J Biol Chem 269: 11186–11191.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal SK, Guru SC, Heppner C, Erdos MR, Collins RM, Park SY et al. (1999). Menin interacts with the AP1 transcription factor JunD and represses JunD-activated transcription. Cell 96: 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal SK, Novotny EA, Crabtree JS, Weitzman JB, Yaniv Jr M, Burns AL et al. (2003). Transcription factor JunD, deprived of menin, switches from growth suppressor to growth promoter. Proc Natl Acad Sci USA 100: 10770–10775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhouayri O, St Arnaud R . (2007). Differential mechanisms of transcriptional regulation of the mouse osteocalcin gene by Jun family members. Calcif Tissue Int 80: 123–131.

    Article  CAS  PubMed  Google Scholar 

  • Alcivar AA, Hake LE, Kwon YK, Hecht NB . (1991). junD mRNA expression differs from c-jun and junB mRNA expression during male germinal cell differentiation. Mol Reprod Dev 30: 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Arguni E, Arima M, Tsuruoka N, Sakamoto A, Hatano M, Tokuhisa T . (2006). JunD/AP-1 and STAT3 are the major enhancer molecules for high Bcl6 expression in germinal center B cells. Int Immunol 18: 1079–1089.

    Article  CAS  PubMed  Google Scholar 

  • Arnold J, Yamamoto B, Li M, Phipps AJ, Younis I, Lairmore MD et al. (2006). Enhancement of infectivity and persistence in vivo by HBZ, a natural antisense coded protein of HTLV-1. Blood 107: 3976–3982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird SD, Turcotte M, Korneluk RG, Holcik M . (2006). Searching for IRES. RNA 12: 1755–1785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basbous J, Arpin C, Gaudray G, Piechaczyk M, Devaux C, Mesnard JM . (2003). The HBZ factor of human T-cell leukemia virus type I dimerizes with transcription factors JunB and c-Jun and modulates their transcriptional activity. J Biol Chem 278: 43620–43627.

    Article  CAS  PubMed  Google Scholar 

  • Berger I, Shaul Y . (1991). Structure and function of human jun-D. Oncogene 6: 561–566.

    CAS  PubMed  Google Scholar 

  • Berger I, Shaul Y . (1994). The human junD gene is positively and selectively autoregulated. DNA Cell Biol 13: 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Bolinger C, Yilmaz A, Hartman TR, Kovacic MB, Fernandez S, Ye J et al. (2007). RNA helicase A interacts with divergent lymphotropic retroviruses and promotes translation of human T-cell leukemia virus type 1. Nucleic Acids Res 35: 2629–2642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braddock M, Muckenthaler M, White MR, Thorburn AM, Sommerville J, Kingsman AJ et al. (1994). Intron-less RNA injected into the nucleus of Xenopus oocytes accesses a regulated translation control pathway. Nucleic Acids Res 22: 5255–5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butsch M, Hull S, Wang Y, Roberts TM, Boris-Lawrie K . (1999). The 5′ RNA terminus of spleen necrosis virus contains a novel posttranscriptional control element that facilitates human immunodeficiency virus Rev/RRE-independent Gag production. J Virol 73: 4847–4855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh MH, Landry S, Audet B, Arpin-Andre C, Hivin P, Pare ME et al. (2006). HTLV-I antisense transcripts initiating in the 3′LTR are alternatively spliced and polyadenylated. Retrovirology 3: 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Groot RP, Karperien M, Pals C, Kruijer W . (1991). Characterization of the mouse junD promoter—high basal level activity due to an octamer motif. EMBO J 10: 2523–2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreijerink KM, Hoppener JW, Timmers HM, Lips CJ . (2006). Mechanisms of disease: multiple endocrine neoplasia type 1—relation to chromatin modifications and transcription regulation. Nat Clin Pract Endocrinol Metab 2: 562–570.

    Article  CAS  PubMed  Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

  • Finkel T . (2006). Intracellular redox regulation by the family of small GTPases. Antioxid Redox Signal 8: 1857–1863.

    Article  CAS  PubMed  Google Scholar 

  • Fries F, Nazarenko I, Hess J, Claas A, Angel P, Zoller M . (2007). CEBPbeta, JunD and c-Jun contribute to the transcriptional activation of the metastasis-associated C4.4A gene. Int J Cancer 120: 2135–2147.

    Article  CAS  PubMed  Google Scholar 

  • Fuchs SY, Xie B, Adler V, Fried VA, Davis RJ, Ronai Z . (1997). c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. J Biol Chem 272: 32163–32168.

    Article  CAS  PubMed  Google Scholar 

  • Gallo A, Cuozzo C, Esposito I, Maggiolini M, Bonofiglio D, Vivacqua A et al. (2002). Menin uncouples Elk-1, JunD and c-Jun phosphorylation from MAP kinase activation. Oncogene 21: 6434–6445.

    Article  CAS  PubMed  Google Scholar 

  • Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D et al. (2004). JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118: 781–794.

    Article  CAS  PubMed  Google Scholar 

  • Gobl AE, Berg M, Lopez-Egido JR, Oberg K, Skogseid B, Westin G . (1999). Menin represses JunD-activated transcription by a histone deacetylase-dependent mechanism. Biochim Biophys Acta 1447: 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Gudikote JP, Imam JS, Garcia RF, Wilkinson MF . (2005). RNA splicing promotes translation and RNA surveillance. Nat Struct Mol Biol 12: 801–809.

    Article  CAS  PubMed  Google Scholar 

  • Gunthert AR, Grundker C, Hollmann K, Emons G . (2002). Luteinizing hormone-releasing hormone induces JunD-DNA binding and extends cell cycle in human ovarian cancer cells. Biochem Biophys Res Commun 294: 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Hai T, Curran T . (1991). Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci USA 88: 3720–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper JW, Elledge SJ . (1999). Skipping into the E2F1-destruction pathway. Nat Cell Biol 1: E5–E7.

    Article  CAS  PubMed  Google Scholar 

  • Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K . (2006). RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 13: 509–516.

    Article  CAS  PubMed  Google Scholar 

  • Hendy GN, Kaji H, Sowa H, Lebrun JJ, Canaff L . (2005). Menin and TGF-beta superfamily member signaling via the Smad pathway in pituitary, parathyroid and osteoblast. Horm Metab Res 37: 375–379.

    Article  CAS  PubMed  Google Scholar 

  • Herschman HR . (1991). Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60: 281–319.

    Article  CAS  PubMed  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M . (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117: 5965–5973.

    Article  CAS  PubMed  Google Scholar 

  • Hilfiker-Kleiner D, Hilfiker A, Kaminski K, Schaefer A, Park JK, Michel K et al. (2005). Lack of JunD promotes pressure overload-induced apoptosis, hypertrophic growth, and angiogenesis in the heart. Circulation 112: 1470–1477.

    Article  PubMed  Google Scholar 

  • Hirai SI, Ryseck RP, Mechta F, Bravo R, Yaniv M . (1989). Characterization of junD: a new member of the jun proto-oncogene family. EMBO J 8: 1433–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hivin P, Arpin-Andre C, Clerc I, Barbeau B, Mesnard JM . (2006). A modified version of a Fos-associated cluster in HBZ affects Jun transcriptional potency. Nucleic Acids Res 34: 2761–2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ijiri K, Zerbini LF, Peng H, Correa RG, Lu B, Walsh N et al. (2005). A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem 280: 38544–38555.

    Article  CAS  PubMed  Google Scholar 

  • Jochum W, Passegue E, Wagner EF . (2001). AP-1 in mouse development and tumorigenesis. Oncogene 20: 2401–2412.

    Article  CAS  PubMed  Google Scholar 

  • Kallunki T, Deng T, Hibi M, Karin M . (1996). c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87: 929–939.

    Article  CAS  PubMed  Google Scholar 

  • Kameda T, Watanabe H, Iba H . (1997). C-Jun and JunD suppress maturation of chondrocytes. Cell Growth Differ 8: 495–503.

    CAS  PubMed  Google Scholar 

  • Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . (1998). Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95: 8292–8297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Lee JE, Cho EJ, Liu JO, Youn HD . (2003). Menin, a tumor suppressor, represses JunD-mediated transcriptional activity by association with an mSin3A-histone deacetylase complex. Cancer Res 63: 6135–6139.

    CAS  PubMed  Google Scholar 

  • Kim H, Lee JE, Kim BY, Cho EJ, Kim ST, Youn HD . (2005). Menin represses JunD transcriptional activity in protein kinase C theta-mediated Nur77 expression. Exp Mol Med 37: 466–475.

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Cantwell CA, Johnson PF, Pfarr CM, Williams SC . (2002). Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation. J Biol Chem 277: 38037–38044.

    Article  CAS  PubMed  Google Scholar 

  • Kozak M . (1984a). Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12: 857–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozak M . (1984b). Selection of initiation sites by eucaryotic ribosomes: effect of inserting AUG triplets upstream from the coding sequence for preproinsulin. Nucleic Acids Res 12: 3873–3893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann AS, Villaudy J, Gazzolo L, Castellazzi M, Mesnard JM, Duc DM . (2007). HTLV-1 HBZ cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT). Retrovirology 4: 92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larocca D, Chao LA, Seto MH, Brunck TK . (1989). Human T-cell leukemia virus minus strand transcription in infected T-cells. Biochem Biophys Res Commun 163: 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu L, Rao JN, Esmaili A, Strauch ED, Bass BL et al. (2002a). JunD stabilization results in inhibition of normal intestinal epithelial cell growth through P21 after polyamine depletion. Gastroenterology 123: 764–779.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Green PL . (2007). Detection and quantitation of HTLV-1 and HTLV-2 mRNA species by real-time RT-PCR. J Virol Methods 142: 159–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Dai W, Lu L . (2002b). Ultraviolet-induced junD activation and apoptosis in myeloblastic leukemia ML-1 cells. J Biol Chem 277: 32668–32676.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jenkins CW, Nichols MA, Xiong Y . (1994). Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9: 2261–2268.

    CAS  PubMed  Google Scholar 

  • Matsumoto J, Ohshima T, Isono O, Shimotohno K . (2005). HTLV-1 HBZ suppresses AP-1 activity by impairing both the DNA-binding ability and the stability of c-Jun protein. Oncogene 24: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Wassarman KM, Wolffe AP . (1998). Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J 17: 2107–2121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka M, Jeang KT . (2007). Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 7: 270–280.

    Article  CAS  PubMed  Google Scholar 

  • McCabe LR, Banerjee C, Kundu R, Harrison RJ, Dobner PR, Stein JL et al. (1996). Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 137: 4398–4408.

    Article  CAS  PubMed  Google Scholar 

  • Mechta-Grigoriou F, Gerald D, Yaniv M . (2001). The mammalian Jun proteins: redundancy and specificity. Oncogene 20: 2378–2389.

    Article  CAS  PubMed  Google Scholar 

  • Mehic D, Bakiri L, Ghannadan M, Wagner EF, Tschachler E . (2005). Fos and jun proteins are specifically expressed during differentiation of human keratinocytes. J Invest Dermatol 124: 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Meixner A, Karreth F, Kenner L, Wagner EF . (2004). JunD regulates lymphocyte proliferation and T helper cell cytokine expression. EMBO J 23: 1325–1335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrick WC, Hershey JWB . (1996). . In: Hershey JWB, Mathews DH and Sonenberg N (eds) Translational Control. Cold Spring Harbor Laboratory Press: Plainview, pp 31–69.

    Google Scholar 

  • Milde-Langosch K . (2005). The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41: 2449–2461.

    Article  CAS  PubMed  Google Scholar 

  • Morgan IM, Asano M, Havarstein LS, Ishikawa H, Hiiragi T, Ito Y et al. (1993). Amino acid substitutions modulate the effect of Jun on transformation, transcriptional activation and DNA replication. Oncogene 8: 1135–1140.

    CAS  PubMed  Google Scholar 

  • Musti AM, Treier M, Peverali FA, Bohmann D . (1996). Differential regulation of c-Jun and JunD by ubiquitin-dependent protein degradation. Biol Chem 377: 619–624.

    CAS  PubMed  Google Scholar 

  • Myohanen S, Baylin SB . (2001). Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem 276: 1634–1642.

    Article  CAS  PubMed  Google Scholar 

  • Naito J, Kaji H, Sowa H, Hendy GN, Sugimoto T, Chihara K . (2005). Menin suppresses osteoblast differentiation by antagonizing the AP-1 factor, JunD. J Biol Chem 280: 4785–4791.

    Article  CAS  PubMed  Google Scholar 

  • Neyns B, Katesuwanasing, Vermeij J, Bourgain C, Vandamme B, Amfo K et al. (1996). Expression of the jun family of genes in human ovarian cancer and normal ovarian surface epithelium. Oncogene 12: 1247–1257.

    CAS  PubMed  Google Scholar 

  • Nott A, Le Hir H, Moore MJ . (2004). Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev 18: 210–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okazaki S, Ito T, Ui M, Watanabe T, Yoshimatsu K, Iba H . (1998). Two proteins translated by alternative usage of initiation codons in mRNA encoding a JunD transcriptional regulator. Biochem Biophys Res Commun 250: 347–353.

    Article  CAS  PubMed  Google Scholar 

  • Persengiev SP, Green MR . (2003). The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis 8: 225–228.

    Article  CAS  PubMed  Google Scholar 

  • Pfarr CM, Mechta F, Spyrou G, Lallemand D, Carillo S, Yaniv M . (1994). Mouse JunD negatively regulates fibroblast growth and antagonizes transformation by ras. Cell 76: 747–760.

    Article  CAS  PubMed  Google Scholar 

  • Pollack PS, Pasquarello LM, Budjak R, Fernandez E, Soprano KJ, Redfern BG et al. (1997). Differential expression of c-jun and junD in end-stage human cardiomyopathy. J Cell Biochem 65: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. (1998). The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2′s inhibition of p53. Cell 92: 713–723.

    Article  CAS  PubMed  Google Scholar 

  • Punga T, Bengoechea-Alonso MT, Ericsson J . (2006). Phosphorylation and ubiquitination of the transcription factor sterol regulatory element-binding protein-1 in response to DNA binding. J Biol Chem 281: 25278–25286.

    Article  CAS  PubMed  Google Scholar 

  • Robb GB, Rana TM . (2007). RNA helicase A interacts with RISC in human cells and functions in RISC loading. Mol Cell 26: 523–537.

    Article  CAS  PubMed  Google Scholar 

  • Roberts TM, Boris-Lawrie K . (2000). The 5′ RNA terminus of spleen necrosis virus stimulates translation of nonviral mRNA. J Virol 74: 8111–8118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts TM, Boris-Lawrie K . (2003). Primary sequence and secondary structure motifs in spleen necrosis virus RU5 confer translational utilization of unspliced human immunodeficiency virus type 1 reporter RNA. J Virol 77: 11973–11984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenger GT, Kok CC, Arthaningtyas E, Thomas MA, Sanderson CJ, Mordvinov VA . (2002). Specific activation of human interleukin-5 depends on de novo synthesis of an AP-1 complex. J Biol Chem 277: 47022–47027.

    Article  CAS  PubMed  Google Scholar 

  • Short JD, Pfarr CM . (2002). Translational regulation of the JunD messenger RNA. J Biol Chem 277: 32697–32705.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Weitzmann MN, Cenci S, Ross FP, Adler S, Pacifici R . (1999). Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J Clin Invest 104: 503–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda Y, Caudell P, Grady G, Wang G, Suwa A, Sharp GC et al. (1999). Human RNA helicase A is a lupus autoantigen that is cleaved during apoptosis. J Immunol 163: 6269–6274.

    CAS  PubMed  Google Scholar 

  • Tange TO, Nott A, Moore MJ . (2004). The ever-increasing complexities of the exon junction complex. Curr Opin Cell Biol 16: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Thebault S, Basbous J, Hivin P, Devaux C, Mesnard JM . (2004). HBZ interacts with JunD and stimulates its transcriptional activity. FEBS Lett 562: 165–170.

    Article  CAS  PubMed  Google Scholar 

  • Thepot D, Weitzman JB, Barra J, Segretain D, Stinnakre MG, Babinet C et al. (2000). Targeted disruption of the murine junD gene results in multiple defects in male reproductive function. Development 127: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Treier M, Staszewski LM, Bohmann D . (1994). Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78: 787–798.

    Article  CAS  PubMed  Google Scholar 

  • Troen G, Nygaard V, Jenssen TK, Ikonomou IM, Tierens A, Matutes E et al. (2004). Constitutive expression of the AP-1 transcription factors c-jun, junD, junB, and c-fos and the marginal zone B-cell transcription factor Notch2 in splenic marginal zone lymphoma. J Mol Diagn 6: 297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji Y . (2005). JunD activates transcription of the human ferritin H gene through an antioxidant response element during oxidative stress. Oncogene 24: 7567–7578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uria JA, Jimenez MG, Balbin M, Freije JM, Lopez-Otin C . (1998). Differential effects of transforming growth factor-beta on the expression of collagenase-1 and collagenase-3 in human fibroblasts. J Biol Chem 273: 9769–9777.

    Article  CAS  PubMed  Google Scholar 

  • Weitzman JB, Fiette L, Matsuo K, Yaniv M . (2000). JunD protects cells from p53-dependent senescence and apoptosis. Mol Cell 6: 1109–1119.

    Article  CAS  PubMed  Google Scholar 

  • Wiegand HL, Lu S, Cullen BR . (2003). Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc Natl Acad Sci USA 100: 11327–11332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willingham AT, Gingeras TR . (2006). TUF love for ‘junk’ DNA. Cell 125: 1215–1220.

    Article  CAS  PubMed  Google Scholar 

  • Xiao L, Rao JN, Zou T, Liu L, Marasa BS, Chen J et al. (2007). Induced JunD in intestinal epithelial cells represses CDK4 transcription through its proximal promoter region following polyamine depletion. Biochem J 403: 573–581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Sharrocks AD . (2004). SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13: 611–617.

    Article  CAS  PubMed  Google Scholar 

  • Yazgan O, Pfarr CM . (2001). Differential binding of the Menin tumor suppressor protein to JunD isoforms. Cancer Res 61: 916–920.

    CAS  PubMed  Google Scholar 

  • Yazgan O, Pfarr CM . (2002). Regulation of two JunD isoforms by Jun N-terminal kinases. J Biol Chem 277: 29710–29718.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Bolinger C, Boris-Lawrie K . (2006). Retrovirus translation initiation: Issues and hypotheses derived from study of HIV-1. Curr HIV Res 4: 131–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenz R, Wagner EF . (2006). Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 38: 1043–1049.

    Article  CAS  PubMed  Google Scholar 

  • Zerbini LF, Wang Y, Cho JY, Libermann TA . (2003). Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer. Cancer Res 63: 2206–2215.

    CAS  PubMed  Google Scholar 

  • Zhang S, Grosse F . (2004). Multiple functions of nuclear DNA helicase II (RNA helicase A) in nucleic acid metabolism. Acta Biochim Biophys Sin (Shanghai) 36: 177–183.

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong Y, Yarbrough WG . (1998). ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725–734.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Gao J, Lu ZY, Lu L, Dai W, Xu M . (2007). Role of c-Fos/JunD in protecting stress-induced cell death. Cell Prolif 40: 431–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms Nicole Placek for input on early versions of the manuscript, Mr Tim Vojt for assistance on figure design and the reviewers for important suggestions. This work was supported by grants from the National Institutes of Health: RO1CA108882; P01CA16058 and P30CA100730.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Boris-Lawrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez, J., Floyd, D., Weilbaecher, K. et al. Multiple facets of junD gene expression are atypical among AP-1 family members. Oncogene 27, 4757–4767 (2008). https://doi.org/10.1038/onc.2008.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.120

Keywords

This article is cited by

Search

Quick links