Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo

Abstract

Sec15, a component of the exocyst, recognizes vesicle-associated Rab GTPases, helps target transport vesicles to the budding sites in yeast and is thought to recruit other exocyst proteins. Here we report the characterization of a 35-kDa fragment that comprises most of the C-terminal half of Drosophila melanogaster Sec15. This C-terminal domain was found to bind a subset of Rab GTPases, especially Rab11, in a GTP-dependent manner. We also provide evidence that in fly photoreceptors Sec15 colocalizes with Rab11 and that loss of Sec15 affects rhabdomere morphology. Determination of the 2.5-Å crystal structure of the C-terminal domain revealed a novel fold consisting of ten α-helices equally distributed between two subdomains (N and C subdomains). We show that the C subdomain, mainly via a single helix, is sufficient for Rab binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results of in vitro binding assays to test the interactions of the Drosophila Sec15 C-terminal domain with Rab GTPases.
Figure 2: Rab11 is upregulated in sec15-mutant tissue and colocalizes with Sec15.
Figure 3: sec15-mutant photoreceptors have a defect in a Rab11-dependent process.
Figure 4: Crystal structure of the Sec15 C-terminal domain and mapping of Rab11 binding sites by mutagenesis.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. TerBush, D.R. & Novick, P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J. Cell Biol. 130, 299–312 (1995).

    Article  CAS  Google Scholar 

  2. TerBush, D., Maurice, T., Roth, D. & Novick, P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15, 6483–6494 (1996).

    Article  CAS  Google Scholar 

  3. Guo, W., Roth, D., Walch-Solimena, C. & Novick, P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. EMBO J. 18, 1071–1080 (1999).

    Article  CAS  Google Scholar 

  4. Novick, P., Field, C. & Schekman, R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21, 205–215 (1980).

    Article  CAS  Google Scholar 

  5. Finger, F.P., Hughes, T.E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).

    Article  CAS  Google Scholar 

  6. Grindstaff, K.K. et al. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Cell 93, 731–740 (1998).

    Article  CAS  Google Scholar 

  7. Yeaman, C., Grindstaff, K.K. & Nelson, W.J. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. J. Cell Sci. 117, 559–570 (2004).

    Article  CAS  Google Scholar 

  8. Inoue, M., Chang, L., Hwang, J., Chiang, S.H. & Saltiel, A.R. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 422, 629–633 (2003).

    Article  CAS  Google Scholar 

  9. Vega, I.E. & Hsu, S.-C. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J. Neurosci. 21, 3839–3848 (2001).

    Article  CAS  Google Scholar 

  10. Murthy, M., Garza, D., Scheller, R.H. & Schwarz, T.L. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 37, 433–447 (2003).

    Article  CAS  Google Scholar 

  11. Bennett, M.K. & Scheller, R.H. The molecular machinery for secretion is conserved from yeast to neurons. Proc. Natl. Acad. Sci. USA 90, 2559–2563 (1993).

    Article  CAS  Google Scholar 

  12. Friedrich, G.A., Hildebrand, J.D. & Soriano, P. The secretory protein Sec8 is required for paraxial mesoderm formation in the mouse. Dev. Biol. 192, 364–374 (1997).

    Article  CAS  Google Scholar 

  13. Mehta, S.Q. et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 46, 219–232 (2005).

    Article  CAS  Google Scholar 

  14. Zhang, X.M., Ellis, S., Sriratana, A., Mitchell, C.A. & Rowe, T. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J. Biol. Chem. 279, 43027–43034 (2004).

    Article  CAS  Google Scholar 

  15. Marchler-Bauer, A. et al. CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 31, 383–387 (2003).

    Article  CAS  Google Scholar 

  16. Deretic, D. Rab proteins and post-Golgi trafficking of rhodopsin in photoreceptor cells. Electrophoresis 18, 2537–2541 (1997).

    Article  CAS  Google Scholar 

  17. Satoh, A.K., O'Tousa, J.E., Ozaki, K. & Ready, D.F. Rab11 mediates post-Golgi trafficking of rhodopsin to the photosensitive apical membrane of Drosophila photoreceptors. Development 132, 1487–1497 (2005).

    Article  CAS  Google Scholar 

  18. Wolff, T. & Ready, D.F. Pattern formation in the Drosophila retina. in The Development of Drosophila melanogaster Vol. II (eds. Bate, M. & Martinez-Arias, A.) 1277–1325 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 1993).

    Google Scholar 

  19. Segev, N. Ypt and Rab GTPases: insight into functions through novel interactions. Curr. Opin. Cell Biol. 13, 500–511 (2001).

    Article  CAS  Google Scholar 

  20. Pereira-Leal, J.B. & Seabra, M.C. Evolution of the Rab family of small GTP-binding proteins. J. Mol. Biol. 313, 889–901 (2001).

    Article  CAS  Google Scholar 

  21. Lloyd, T.E. et al. A genome-wide search for synaptic vesicle cycle proteins in Drosophila. Neuron 26, 45–50 (2000).

    Article  CAS  Google Scholar 

  22. Fischer von Mollard, G. et al. rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc. Natl. Acad. Sci. USA 87, 1988–1992 (1990).

    Article  CAS  Google Scholar 

  23. Stahl, B., Chou, J.H., Li, C., Sudhof, T.C. & Jahn, R. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. EMBO J. 15, 1799–1809 (1996).

    Article  CAS  Google Scholar 

  24. Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K. & Sudhof, T.C. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593–598 (1997).

    Article  CAS  Google Scholar 

  25. Nonet, M.L. et al. Caenorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J. Neurosci. 17, 8061–8073 (1997).

    Article  CAS  Google Scholar 

  26. Regazzi, R. et al. Expression, localization and functional role of small GTPases of the Rab3 family in insulin-secreting cells. J. Cell Sci. 109, 2265–2273 (1996).

    CAS  PubMed  Google Scholar 

  27. Yi, Z. et al. The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol. Cell. Biol. 22, 1858–1867 (2002).

    Article  CAS  Google Scholar 

  28. Araki, K. et al. Small Gtpase rab3A is associated with melanosomes in melanoma cells. Pigment Cell Res. 13, 332–336 (2000).

    Article  CAS  Google Scholar 

  29. Bahadoran, P. et al. Rab27a: A key to melanosome transport in human melanocytes. J. Cell Biol. 152, 843–850 (2001).

    Article  CAS  Google Scholar 

  30. Menasche, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    Article  CAS  Google Scholar 

  31. Wilson, S.M. et al. A mutation in Rab27a causes the vesicle transport defects observed in ashen mice. Proc. Natl. Acad. Sci. USA 97, 7933–7938 (2000).

    Article  CAS  Google Scholar 

  32. Ang, A.L., Folsch, H., Koivisto, U.M., Pypaert, M. & Mellman, I. The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J. Cell Biol. 163, 339–350 (2003).

    Article  CAS  Google Scholar 

  33. Vyas, N.K., Vyas, M.N. & Quiocho, F.A. Crystal structure of M. tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by ion-dipole interactions. Structure 11, 765–774 (2003).

    Article  CAS  Google Scholar 

  34. Panic, B., Perisic, O., Veprintsev, D.B., Williams, R.L. & Munro, S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol. Cell 12, 863–874 (2003).

    Article  CAS  Google Scholar 

  35. Zhu, G. et al. Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Nat. Struct. Mol. Biol. 11, 975–983 (2004).

    Article  CAS  Google Scholar 

  36. Ostermeier, C. & Brunger, A.T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell 96, 363–374 (1999).

    Article  CAS  Google Scholar 

  37. Pasqualato, S. et al. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. J. Biol. Chem. 279, 11480–11488 (2004).

    Article  CAS  Google Scholar 

  38. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  39. Fukuda, M. Distinct Rab binding specificity of Rim1, Rim2, rabphilin, and Noc2. Identification of a critical determinant of Rab3A/Rab27A recognition by Rim2. J. Biol. Chem. 278, 15373–15380 (2003).

    Article  CAS  Google Scholar 

  40. Jafar-Nejad, H. et al. Sec15, a component of the exocyst, promotes Notch signaling during the asymmetric division of Drosophila sensory organ precursors. Dev. Cell published online 1 Sep 2005.

  41. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  42. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  Google Scholar 

  43. La Fortelle, E.D. & Bricogne, G. SHARP program for statistical heavy-atom refinement. Methods Enzymol. 276, 472–494 (1997).

    Article  Google Scholar 

  44. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. D Biol. Crystallogr. 47, 110–119 (1991).

    Article  Google Scholar 

  45. Van Vactor, D., Jr., Krantz, D.E., Reinke, R. & Zipursky, S.L. Analysis of mutants in chaoptin, a photoreceptor cell-specific glycoprotein in Drosophila, reveals its role in cellular morphogenesis. Cell 52, 281–290 (1988).

    Article  CAS  Google Scholar 

  46. Dollar, G., Struckhoff, E., Michaud, J. & Cohen, R.S. Rab11 polarization of the Drosophila oocyte: a novel link between membrane trafficking, microtubule organization, and oskar mRNA localization and translation. Development 129, 517–526 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the staff at Lawrence Berkeley National Laboratory beamline 8.2.1 for their help with the X-ray data collection. We thank J. He and J.L. Fallon for their technical assistance and R. Cohen (University of Kansas, Lawrence, Kansas, USA) for the Rab11 antibody, Rab11-GFP line and Rab11 mutants. S.W. was supported in part by a training fellowship from the W.M. Keck Foundation to the Gulf Coast Consortia through the Keck Center for Computational and Structural Biology and by a grant from the Welch Foundation (Q-0581) to F.A.Q. S.Q.M. was supported by the US National Institutes of Health grant EY07001 and is a member of the Medical Scientist Training Program. A significant part of the work in the laboratories of F.A.Q. and H.J.B. was supported by the Howard Hughes Medical Institute. Work in F.P.'s laboratory was supported by the Medical Research Council and the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florante A Quiocho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of the predicted Sec15 domain (PDF 347 kb)

Supplementary Fig. 2

Electrostatic surface properties of the C-terminal domain and an unusual interaction of Arg572. (PDF 593 kb)

Supplementary Fig. 3

Model of the interaction between the C-subdomain and Rab11. (PDF 151 kb)

Supplementary Table 1

Interaction of the C-subdomain mutants with Rab11 (PDF 85 kb)

Supplementary Methods (PDF 132 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Mehta, S., Pichaud, F. et al. Sec15 interacts with Rab11 via a novel domain and affects Rab11 localization in vivo. Nat Struct Mol Biol 12, 879–885 (2005). https://doi.org/10.1038/nsmb987

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb987

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing