Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer–editing conformation

Abstract

Leucyl-tRNA synthetase (LeuRS) has a specific post-transfer editing activity directed against mischarged isoleucine and similar noncognate amino acids. We describe the post-transfer–editing and product complexes of Thermus thermophilus LeuRS (LeuRSTT) with tRNALeu at 2.9- to 3.3-Å resolution. In the post-transfer–editing configuration, A76 binds in the editing active site exactly as previously found for the adenosine moiety of a small-molecule editing-substrate analog. The 60 C-terminal residues of LeuRSTT, unseen in previous structures, fold into a compact domain flexibly linked to the rest of the molecule and interacting with the G19-C56 tertiary base pair of tRNALeu. LeuRS recognition of tRNALeu depends essentially on tRNA shape rather than base-specific interactions. The structures show that considerable domain rotations, notably of the editing domain, accompany the tRNA–3′ end dynamics associated successively with aminoacylation, post-transfer editing and product release.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the complex.
Figure 2: Structural comparison of the long-variable-arm tRNAs.
Figure 3: Structure and interactions of tRNALeu.
Figure 4: tRNA interactions with the editing domain.
Figure 5: Translocation from the aminoacylation to the editing configuration.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pauling, L. The probability of errors in the process of synthesis of protein molecules. in Arbeiten aus dem Gebiet der Naturstoffe (Festschrift Prof. Dr. Arthur Stoll) 597–602 (Birkhauser Verlag, Basel, Switzerland, 1957).

    Google Scholar 

  2. Jakubowski, H. Accuracy of aminoacyl-tRNA synthetases: proofreading of amino acids. in Aminoacyl-tRNA Synthetases (eds. Ibba, M., Francklyn, C. and Cusack, S.) 384–396 (Landes Biosciences, Georgetown, Texas, USA, 2005).

    Google Scholar 

  3. Lincecum, T.L., Jr . et al. Structural and mechanistic basis of pre- and posttransfer editing by leucyl-tRNA synthetase. Mol. Cell 11, 951–963 (2003).

    Article  CAS  Google Scholar 

  4. Fukunaga, R., Fukai, S., Ishitani, R., Nureki, O. & Yokoyama, S. Crystal structures of the CP1 domain from Thermus thermophilus isoleucyl-tRNA synthetase and its complex with L-valine. J. Biol. Chem. 279, 8396–8402 (2004).

    Article  CAS  Google Scholar 

  5. Fukai, S. et al. Structural basis for double-sieve discrimination of L-valine from L- isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103, 793–803 (2000).

    Article  CAS  Google Scholar 

  6. Dock-Bregeon, A. et al. Transfer RNA-mediated editing in threonyl-tRNA synthetase. The class II solution to the double discrimination problem. Cell 103, 877–884 (2000).

    Article  CAS  Google Scholar 

  7. Wong, F.C., Beuning, P.J., Nagan, M., Shiba, K. & Musier-Forsyth, K. Functional role of the prokaryotic proline-tRNA synthetase insertion domain in amino acid editing. Biochemistry 41, 7108–7115 (2002).

    Article  CAS  Google Scholar 

  8. Beebe, K., Ribas De Pouplana, L. & Schimmel, P. Elucidation of tRNA-dependent editing by a class II tRNA synthetase and significance for cell viability. EMBO J. 22, 668–675 (2003).

    Article  CAS  Google Scholar 

  9. Roy, H., Ling, J., Irnov, M. & Ibba, M. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase. EMBO J. 23, 4639–4648 (2004).

    Article  CAS  Google Scholar 

  10. Dock-Bregeon, A.C. et al. Achieving error-free translation; the mechanism of proofreading of threonyl-tRNA synthetase at atomic resolution. Mol. Cell 16, 375–386 (2004).

    Article  CAS  Google Scholar 

  11. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263, 1404–1410 (1994).

    Article  CAS  Google Scholar 

  12. Yaremchuk, A., Kriklivyi, I., Tukalo, M. & Cusack, S. Class I tyrosyl-tRNA synthetase has a class II mode of cognate tRNA recognition. EMBO J. 21, 3829–3840 (2002).

    Article  CAS  Google Scholar 

  13. Asahara, H. et al. Recognition nucleotides of Escherichia coli tRNALeu and its elements facilitating discrimination from tRNASer and tRNATyr. J. Mol. Biol. 231, 219–229 (1993).

    Article  CAS  Google Scholar 

  14. Soma, A., Uchiyama, K., Sakamoto, T., Maeda, M. & Himeno, H. Unique recognition style of tRNA(Leu) by Haloferax volcanii leucyl-tRNA synthetase. J. Mol. Biol. 293, 1029–1038 (1999).

    Article  CAS  Google Scholar 

  15. Asahara, H., Nameki, N. & Hasegawa, T. In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase. J. Mol. Biol. 283, 605–618 (1998).

    Article  CAS  Google Scholar 

  16. Tocchini-Valentini, G., Saks, M.E. & Abelson, J. tRNA leucine identity and recognition sets. J. Mol. Biol. 298, 779–793 (2000).

    Article  CAS  Google Scholar 

  17. Larkin, D.C., Williams, A.M., Martinis, S.A. & Fox, G.E. Identification of essential domains for Escherichia coli tRNA(leu) aminoacylation and amino acid editing using minimalist RNA molecules. Nucleic Acids Res. 30, 2103–2113 (2002).

    Article  CAS  Google Scholar 

  18. Du, X. & Wang, E.D. Tertiary structure base pairs between D- and TpsiC-loops of Escherichia coli tRNA(Leu) play important roles in both aminoacylation and editing. Nucleic Acids Res. 31, 2865–2872 (2003).

    Article  CAS  Google Scholar 

  19. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structure of the ternary complex of T.thermophilus seryl- tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 15, 2834–2842 (1996).

    Article  CAS  Google Scholar 

  20. Fukunaga, R. & Yokoyama, S. Aminoacylation complex structures of leucyl-tRNA synthetase and tRNALeu reveal two modes of discriminator-base recognition. Nat. Struct. Mol. Biol., advance online publication 11 September 2005 (10.1038/nsmb985)

  21. Cusack, S., Yaremchuk, A. & Tukalo, M. The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 19, 2351–2361 (2000).

    Article  CAS  Google Scholar 

  22. Hauenstein, S., Zhang, C.M., Hou, Y.M. & Perona, J.J. Shape-selective RNA recognition by cysteinyl-tRNA synthetase. Nat. Struct. Mol. Biol. 11, 1134–1141 (2004).

    Article  CAS  Google Scholar 

  23. Holm, L. & Sander, C. Dali: a network tool for protein structure comparison. Trends Biochem. Sci. 20, 478–480 (1995).

    Article  CAS  Google Scholar 

  24. Fukunaga, R. & Yokoyama, S. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. J. Mol. Biol. 346, 57–71 (2005).

    Article  CAS  Google Scholar 

  25. Delagoutte, B., Moras, D. & Cavarelli, J. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. EMBO J. 19, 5599–5610 (2000).

    Article  CAS  Google Scholar 

  26. Silvian, L.F., Wang, J. & Steitz, T.A. Insights into editing from an ile-tRNA synthetase structure with tRNAile and mupirocin. Science 285, 1074–1077 (1999).

    Article  CAS  Google Scholar 

  27. Yaremchuk, A., Cusack, S., Gudzera, O., Grotli, M. & Tukalo, M. Crystallization and preliminary crystallographic analysis of Thermus thermophilus leucyl-tRNA synthetase and its complexes with leucine and a non-hydrolysable leucyl-adenylate analogue. Acta Crystallogr. D Biol. Crystallogr. 56, 667–669 (2000).

    Article  CAS  Google Scholar 

  28. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  29. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47, 110–119 (1991).

    Article  Google Scholar 

  31. Brunger, A.T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  32. Esnouf, R.M. Further additions to Molscript version 1.4, including reading and contouring of electron density maps. Acta Crystallogr. D Biol. Crystallogr. 55, 938–940 (1999).

    Article  CAS  Google Scholar 

  33. Merritt, E.A. & Murphy, M.E. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the European Synchrotron Radiation Facility (ESRF)–European Molecular Biology Laboratory Joint Structural Biology Group for access to ESRF synchrotron beamline facilities. A.Y. was supported in part by the Human Frontiers Science Programme Research grant RGP0190/2001-M and M.T. by US National Institutes of Health grant GM63107 to S. Martinis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Cusack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Multiple sequence alignment of the C-terminal domain of representative bacteria and organellar LeuRS showing conservation of key residues. (PDF 68 kb)

Supplementary Fig. 2

Simulated omit map Fo-Fc electron density for the 3′ end of tRNALeu and Nva2AA. (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tukalo, M., Yaremchuk, A., Fukunaga, R. et al. The crystal structure of leucyl-tRNA synthetase complexed with tRNALeu in the post-transfer–editing conformation. Nat Struct Mol Biol 12, 923–930 (2005). https://doi.org/10.1038/nsmb986

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing