Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Actin and myosin I in the nucleus: what next?

Abstract

Several recent publications have demonstrated the importance of nuclear actin and nuclear myosin I in transcription. Here we review these publications and their implications. In addition, we discuss some important issues that should be addressed to gain a more comprehensive understanding of how these traditionally 'cytoplasmic' proteins are involved in transcription. We propose highly speculative models and mechanisms solely to stimulate thought and experimentation in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic showing the possible involvement of β-actin and NMI in the various stages of transcription.
Figure 2: NMI binding to DNA.

Similar content being viewed by others

References

  1. Lemon, B. & Tjian, R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551–2569 (2000).

    Article  CAS  Google Scholar 

  2. Cook, P.R. The organization of replication and transcription. Science 284, 1790–1795 (1999).

    Article  CAS  Google Scholar 

  3. Sellers, J.R. Myosins: a diverse superfamily. Biochim. Biophys. Acta 1496, 3–22 (2000).

    Article  CAS  Google Scholar 

  4. Hagen, S.J., Kiehart, D.P., Kaiser, D.A. & Pollard, T.D. Characterization of monoclonal antibodies to Acanthamoeba myosin-I that cross-react with both myosin-II and low molecular mass nuclear proteins. J. Cell Biol. 103, 2121–2128 (1986).

    Article  CAS  Google Scholar 

  5. Rimm, D.L. & Pollard, T.D. Purification and characterization of an Acanthamoeba nuclear actin-binding protein. J. Cell Biol. 109, 585–591 (1989).

    Article  CAS  Google Scholar 

  6. Berrios, M., Fisher, P.A. & Matz, E.C. Localization of a myosin heavy chain-like polypeptide to Drosophila nuclear pore complexes. Proc. Natl. Acad. Sci. USA 88, 219–223 (1991).

    Article  CAS  Google Scholar 

  7. Green, D.M., Johnson, C.P., Hagan, H. & Corbett, A.H. The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc. Natl. Acad. Sci. USA 100, 1010–1015 (2003).

    Article  CAS  Google Scholar 

  8. Clark, T.G. & Rosenbaum, J.L. An actin filament matrix in hand-isolated nuclei of X. laevis oocytes. Cell 18, 1101–1108 (1979).

    Article  CAS  Google Scholar 

  9. Nakayasu, H. & Ueda, K. Association of actin with the nuclear matrix from bovine lymphocytes. Exp. Cell Res. 143, 55–62 (1983).

    Article  CAS  Google Scholar 

  10. Lane, N.J. Intranuclear fibrillar bodies in actinomycin D-treated oocytes. J. Cell Biol. 40, 286–291 (1969).

    Article  CAS  Google Scholar 

  11. Jockusch, B.M., Becker, M., Hindennach, I. & Jockusch, E. Slime mould actin: homology to vertebrate actin and presence in the nucleus. Exp. Cell Res. 89, 241–246 (1974).

    Article  CAS  Google Scholar 

  12. Egly, J.M., Miyamoto, N.G., Moncollin, V. & Chambon, P. Is actin a transcription initiation factor for RNA polymerase B? EMBO J. 3, 2363–2371 (1984).

    Article  CAS  Google Scholar 

  13. Rungger, D., Rungger-Brandle, E., Chaponnier, C. & Gabbiani, G. Intranuclear injection of anti-actin antibodies into Xenopus oocytes blocks chromosome condensation. Nature 282, 320–321 (1979).

    Article  CAS  Google Scholar 

  14. Scheer, U., Hinssen, H., Franke, W.W. & Jockusch, B.M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39, 111–122 (1984).

    Article  CAS  Google Scholar 

  15. Zhao, K. et al. Rapid and phosphoinositol-dependent binding of the SWI/SNF-like BAF complex to chromatin after T lymphocyte receptor signaling. Cell 95, 625–636 (1998).

    Article  CAS  Google Scholar 

  16. Pestic-Dragovich, L. et al. A myosin I isoform in the nucleus. Science 290, 337–341 (2000).

    Article  CAS  Google Scholar 

  17. Gillespie, P.G. et al. Myosin-I nomenclature. J. Cell Biol. 155, 703–704 (2001).

    Article  CAS  Google Scholar 

  18. Nowak, G. et al. Evidence for the presence of myosin I in the nucleus. J. Biol. Chem. 272, 17176–17181 (1997).

    Article  CAS  Google Scholar 

  19. Fomproix, N. & Percipalle, P. An actin-myosin complex on actively transcribing genes. Exp. Cell Res. 294, 140–148 (2004).

    Article  CAS  Google Scholar 

  20. Philimonenko, V.V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165–1172 (2004).

    Article  CAS  Google Scholar 

  21. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  Google Scholar 

  22. Hofmann, W.A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6, 1094–1101 (2004).

    Article  CAS  Google Scholar 

  23. Hu, P., Wu, S. & Hernandez, N. A role for beta-actin in RNA polymerase III transcription. Genes Dev. 18, 3010–3015 (2004).

    Article  CAS  Google Scholar 

  24. Kukalev, A., Nord, Y., Palmberg, C., Bergman, T. & Percipalle, P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 12, 238–244 (2005).

    Article  CAS  Google Scholar 

  25. Kugel, J.F. & Goodrich, J.A. A kinetic model for the early steps of RNA synthesis by human RNA polymerase II. J. Biol. Chem. 275, 40483–40491 (2000).

    Article  CAS  Google Scholar 

  26. Wang, M.D. et al. Force and velocity measured for single molecules of RNA polymerase. Science 282, 902–907 (1998).

    Article  CAS  Google Scholar 

  27. Shaevitz, J.W., Abbondanzieri, E.A., Landick, R. & Block, S.M. Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature 426, 684–687 (2003).

    Article  CAS  Google Scholar 

  28. Gonsior, S.M. et al. Conformational difference between nuclear and cytoplasmic actin as detected by a monoclonal antibody. J. Cell Sci. 112, 797–809 (1999).

    CAS  PubMed  Google Scholar 

  29. Visegrady, B., Lorinczy, D., Hild, G., Somogyi, B. & Nyitrai, M. A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett. 579, 6–10 (2005).

    Article  CAS  Google Scholar 

  30. Ohta, Y., Nishida, E., Sakai, H. & Miyamoto, E. Dephosphorylation of cofilin accompanies heat shock-induced nuclear accumulation of cofilin. J. Biol. Chem. 264, 16143–16148 (1989).

    CAS  PubMed  Google Scholar 

  31. Skare, P., Kreivi, J.P., Bergstrom, A. & Karlsson, R. Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp. Cell Res. 286, 12–21 (2003).

    Article  CAS  Google Scholar 

  32. Pollard, T.D., Blanchoin, L. & Mullins, R.D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  Google Scholar 

  33. Pendleton, A., Pope, B., Weeds, A. & Koffer, A. Latrunculin B or ATP depletion induces cofilin-dependent translocation of actin into nuclei of mast cells. J. Biol. Chem. 278, 14394–14400 (2003).

    Article  CAS  Google Scholar 

  34. Stuven, T., Hartmann, E. & Gorlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J. 22, 5928–5940 (2003).

    Article  Google Scholar 

  35. Bettinger, B.T., Gilbert, D.M. & Amberg, D.C. Actin up in the nucleus. Nat. Rev. Mol. Cell Biol. 5, 410–415 (2004).

    Article  CAS  Google Scholar 

  36. Pederson, T. & Aebi, U. Actin in the nucleus: what form and what for? J. Struct. Biol. 140, 3–9 (2002).

    Article  CAS  Google Scholar 

  37. Mermall, V., Post, P.L. & Mooseker, M.S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279, 527–533 (1998).

    Article  CAS  Google Scholar 

  38. Adams, R.J. & Pollard, T.D. Binding of myosin I to membrane lipids. Nature 340, 565–568 (1989).

    Article  CAS  Google Scholar 

  39. Adamson, T.E., Shore, S.M. & Price, D.H. Analysis of RNA polymerase II elongation in vitro. Methods Enzymol. 371, 264–275 (2003).

    Article  CAS  Google Scholar 

  40. Holt, J.R. et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381 (2002).

    Article  CAS  Google Scholar 

  41. Krauss, S.W., Chen, C., Penman, S. & Heald, R. Nuclear actin and protein 4.1: essential interactions during nuclear assembly in vitro. Proc. Natl. Acad. Sci. USA 100, 10752–10757 (2003).

    Article  CAS  Google Scholar 

  42. Olave, I.A., Reck-Peterson, S.L. & Crabtree, G.R. Nuclear actin and actin-related proteins in chromatin remodeling. Annu. Rev. Biochem. 71, 755–781 (2002).

    Article  CAS  Google Scholar 

  43. Cairns, B.R., Erdjument-Bromage, H., Tempst, P., Winston, F. & Kornberg, R.D. Two actin-related proteins are shared functional components of the chromatin-remodeling complexes RSC and SWI/SNF. Mol. Cell 2, 639–651 (1998).

    Article  CAS  Google Scholar 

  44. Jonsson, Z.O., Jha, S., Wohlschlegel, J.A. & Dutta, A. Rvb1p/Rvb2p recruit Arp5p and assemble a functional Ino80 chromatin remodeling complex. Mol. Cell 16, 465–477 (2004).

    Article  CAS  Google Scholar 

  45. Galarneau, L. et al. Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol. Cell 5, 927–937 (2000).

    Article  CAS  Google Scholar 

  46. Shen, X., Ranallo, R., Choi, E. & Wu, C. Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12, 147–155 (2003).

    Article  CAS  Google Scholar 

  47. Harata, M. et al. Correlation between chromatin association and transcriptional regulation for the Act3p/Arp4 nuclear actin-related protein of Saccharomyces cerevisiae. Nucleic Acids Res. 30, 1743–1750 (2002).

    Article  CAS  Google Scholar 

  48. Percipalle, P. et al. An actin-ribonucleoprotein interaction is involved in transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6475–6480 (2003).

    Article  CAS  Google Scholar 

  49. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).

    Article  CAS  Google Scholar 

  50. Percipalle, P. et al. Actin bound to the heterogeneous nuclear ribonucleoprotein hrp36 is associated with Balbiani ring mRNA from the gene to polysomes. J. Cell Biol. 153, 229–236 (2001).

    Article  CAS  Google Scholar 

  51. Percipalle, P. et al. Nuclear actin is associated with a specific subset of hnRNP A/B-type proteins. Nucleic Acids Res. 30, 1725–1734 (2002).

    Article  CAS  Google Scholar 

  52. Irvine, R.F. Nuclear lipid signalling. Nat. Rev. Mol. Cell Biol. 4, 349–360 (2003).

    Article  CAS  Google Scholar 

  53. Alberts, B. et al. Molecular Biology of the Cell 4th edn (Garland Science, New York, 2002).

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the US National Institutes of Health (GM59648) and the US National Science Foundation (INT 9724168 and MCB 0517468) to P. de L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primal de Lanerolle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lanerolle, P., Johnson, T. & Hofmann, W. Actin and myosin I in the nucleus: what next?. Nat Struct Mol Biol 12, 742–746 (2005). https://doi.org/10.1038/nsmb983

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb983

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing