Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling

Abstract

The ATPase ISWI is the molecular motor of several nucleosome remodeling complexes including ACF. We analyzed the ACF-nucleosome interactions and determined the characteristics of ACF-dependent nucleosome remodeling. In contrast to ISWI, ACF interacts symmetrically with DNA entry sites of the nucleosome. Two-color fluorescence cross-correlation spectroscopy measurements show that ACF can bind four DNA duplexes simultaneously in a complex that contains two Acf1 and ISWI molecules. Using bead-bound nucleosomal substrates, nucleosome movement by mechanisms involving DNA twisting was excluded. Furthermore, an ACF-dependent local detachment of DNA from the nucleosome was demonstrated in a novel assay based on the preferred intercalation of ethidium bromide to free DNA. The findings suggest a loop recapture mechanism in which ACF introduces a DNA loop at the nucleosomal entry site that propagates over the histone octamer surface and leads to nucleosome repositioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ACF interacts with the DNA entry site of the nucleosome.
Figure 2: Analysis of ACF-DNA binding by fluorescence cross-correlation spectroscopy.
Figure 3: High-resolution analysis of the nucleosome remodeling reaction.
Figure 4: Large obstacles do not inhibit nucleosome remodeling.
Figure 5: ACF-dependent nucleosome remodeling generates accessible DNA.
Figure 6: Scheme of the local recapture model.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Becker, P.B. & Hörz, W. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71, 247–273 (2002).

    Article  CAS  Google Scholar 

  2. Längst, G. & Becker, P.B. Nucleosome remodeling: one mechanism, many phenomena? Biochim. Biophys. Acta 1677, 58–63 (2004).

    Article  Google Scholar 

  3. Widom, J. Role of DNA sequence in nucleosome stability and dynamics. Q. Rev. Biophys. 34, 269–324 (2001).

    Article  CAS  Google Scholar 

  4. Van Holde, K.E. & Yager, T.D. Nucleosome motion: evidence models. in Structure and Function of the Genetic Apparatus (eds. Nicolini, C. & Ts'o, P.O.P.) (Plenum, New York, 1985).

    Google Scholar 

  5. Schiessel, H., Widom, J., Bruinsma, R.F. & Gelbart, W.M. Polymer reptation and nucleosome repositioning. Phys. Rev. Lett. 86, 4414–4417 (2001).

    Article  CAS  Google Scholar 

  6. Widom, J. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 27, 285–327 (1998).

    Article  CAS  Google Scholar 

  7. Studitsky, V.M., Clark, D.J. & Felsenfeld, G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76, 371–382 (1994).

    Article  CAS  Google Scholar 

  8. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    Article  CAS  Google Scholar 

  9. Brower-Toland, B.D. et al. Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proc. Natl. Acad. Sci. USA 99, 1960–1965 (2002).

    Article  CAS  Google Scholar 

  10. Davey, C.A., Sargent, D.F., Luger, K., Maeder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution. J. Mol. Biol. 319, 1097–1113 (2002).

    Article  CAS  Google Scholar 

  11. Tsukiyama, T., Daniel, C., Tamkun, J. & Wu, C. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83, 1021–1026 (1995).

    Article  CAS  Google Scholar 

  12. Ito, T., Bulger, M., Pazin, M.J., Kobayashi, R. & Kadonaga, J.T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  Google Scholar 

  13. Varga-Weisz, P. et al. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388, 598–602 (1997).

    Article  CAS  Google Scholar 

  14. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  Google Scholar 

  15. Havas, K. et al. Generation of superhelical torsion by ATP-dependent chromatin remodeling activities. Cell 103, 1133–1142 (2000).

    Article  CAS  Google Scholar 

  16. Aoyagi, S. & Hayes, J.J. hSWI/SNF-catalyzed nucleosome sliding does not occur solely via a twist-diffusion mechanism. Mol. Cell. Biol. 22, 7484–7490 (2002).

    Article  CAS  Google Scholar 

  17. Schwanbeck, R., Xiao, H. & Wu, C. Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex. J. Biol. Chem. 279, 39933–39941 (2004).

    Article  CAS  Google Scholar 

  18. Längst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  Google Scholar 

  19. Längst, G., Bonte, E.J., Corona, D.F. & Becker, P.B. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97, 843–852 (1999).

    Article  Google Scholar 

  20. Eberharter, A. et al. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J. 20, 3781–3788 (2001).

    Article  CAS  Google Scholar 

  21. Rigler, R. & Elson, E.S. Fluorescence Correlation Spectroscopy: Theory and Applications (Springer, Berlin, 2001).

    Book  Google Scholar 

  22. Rippe, K. Simultaneous binding of two DNA duplexes to the NtrC–enhancer complex studied by two-color fluorescence cross-correlation spectroscopy. Biochemistry 39, 2131–2139 (2000).

    Article  CAS  Google Scholar 

  23. Weidemann, T., Wachsmuth, M., Tewes, M., Rippe, K. & Langowski, J. Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy. Single Molecules 3, 49–61 (2002).

    Article  CAS  Google Scholar 

  24. Schwille, P., Meyer-Almes, F.J. & Rigler, R. Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys. J. 72, 1878–1886 (1997).

    Article  CAS  Google Scholar 

  25. Rippe, K., Mucke, N. & Schulz, A. Association states of the transcription activator protein NtrC from E. coli determined by analytical ultracentrifugation. J. Mol. Biol. 278, 915–933 (1998).

    Article  CAS  Google Scholar 

  26. McMurray, C.T. & van Holde, K.E. Binding of ethidium bromide causes dissociation of the nucleosome core particle. Proc. Natl. Acad. Sci. USA 83, 8472–8476 (1986).

    Article  CAS  Google Scholar 

  27. McMurray, C.T. & van Holde, K.E. Binding of ethidium to the nucleosome core particle. 1. Binding and dissociation reactions. Biochemistry 30, 5631–5643 (1991).

    Article  CAS  Google Scholar 

  28. Deniss, I.S. & Morgan, A.R. Studies on the mechanism of DNA cleavage by ethidium. Nucleic Acids Res. 3, 315–323 (1976).

    Article  CAS  Google Scholar 

  29. Krishnamurthy, G., Polte, T., Rooney, T. & Hogan, M.E. A photochemical method to map ethidium bromide binding sites on DNA: application to a bent DNA fragment. Biochemistry 29, 981–988 (1990).

    Article  CAS  Google Scholar 

  30. Boles, T.C. & Hogan, M.E. Site-specific carcinogen binding to DNA. Proc. Natl. Acad. Sci. USA 81, 5623–5627 (1984).

    Article  CAS  Google Scholar 

  31. Kagalwala, M.N., Glaus, B.J., Dang, W., Zofall, M. & Bartholomew, B. Topography of the ISW2–nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J. 23, 2092–2104 (2004).

    Article  CAS  Google Scholar 

  32. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    Article  CAS  Google Scholar 

  33. Clapier, C.R., Längst, G., Corona, D.F., Becker, P.B. & Nightingale, K.P. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol. Cell. Biol. 21, 875–883 (2001).

    Article  CAS  Google Scholar 

  34. Clapier, C.R., Nightingale, K.P. & Becker, P.B. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res. 30, 649–655 (2002).

    Article  CAS  Google Scholar 

  35. Ebralidse, K.K., Grachev, S.A. & Mirzabekov, A.D. A highly basic histone H4 domain bound to the sharply bent region of nucleosomal DNA. Nature 331, 365–367 (1988).

    Article  CAS  Google Scholar 

  36. LeRoy, G., Loyola, A., Lane, W.S. & Reinberg, D. Purification and characterization of a human factor that assembles and remodels chromatin. J. Biol. Chem. 275, 14787–14790 (2000).

    Article  CAS  Google Scholar 

  37. Poot, R.A. et al. HuCHRAC, a human ISWI chromatin remodelling complex contains hACF1 and two novel histone-fold proteins. EMBO J. 19, 3377–3387 (2000).

    Article  CAS  Google Scholar 

  38. Längst, G., Schatz, T., Langowski, J. & Grummt, I. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer. Nucleic Acids Res. 25, 511–517 (1997).

    Article  Google Scholar 

  39. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling: farewell to the tuna-can octamer? Curr. Opin. Genet. Dev. 14, 165–173 (2004).

    Article  CAS  Google Scholar 

  40. Lorch, Y., Davis, B. & Kornberg, R.D. Chromatin remodeling by DNA bending, not twisting. Proc. Natl. Acad. Sci. USA 102, 1329–1332 (2005).

    Article  CAS  Google Scholar 

  41. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  42. Flaus, A. & Owen-Hughes, T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol. Cell. Biol. 23, 7767–7779 (2003).

    Article  CAS  Google Scholar 

  43. Flaus, A. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Curr. Opin. Genet. Dev. 11, 148–154 (2001).

    Article  CAS  Google Scholar 

  44. Singleton, M.R. & Wigley, D.B. Modularity and specialization in superfamily 1 and 2 helicases. J. Bacteriol. 184, 1819–1826 (2002).

    Article  CAS  Google Scholar 

  45. Fitzgerald, D.J. et al. Reaction cycle of the yeast Isw2 chromatin remodeling complex. EMBO J. 23, 3836–3843 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Emmerichs from Spectra Physics for providing the laser equipment and Leica Microsystems for making the FCS system available. This work was supported by grants from Deutsche Forschungsgemeinschaft and the Volkswagen Foundation in the program Junior Research Groups at German Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Längst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

ACF has an apparent molecular mass above 600 kDa. (PDF 2462 kb)

Supplementary Fig. 2

Nucleosome remodeling does not release biotinylated nucleosomes from Streptavidin beads. (PDF 964 kb)

Supplementary Methods (PDF 909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strohner, R., Wachsmuth, M., Dachauer, K. et al. A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling. Nat Struct Mol Biol 12, 683–690 (2005). https://doi.org/10.1038/nsmb966

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing