Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A peptide inhibitor of HIV-1 assembly in vitro

Abstract

Formation of infectious HIV-1 involves assembly of Gag polyproteins into immature particles and subsequent assembly of mature capsids after proteolytic disassembly of the Gag shell. We report a 12-mer peptide, capsid assembly inhibitor (CAI), that binds the capsid (CA) domain of Gag and inhibits assembly of immature- and mature-like capsid particles in vitro. CAI was identified by phage display screening among a group of peptides with similar sequences that bind to a single reactive site in CA. Its binding site was mapped to CA residues 169–191, with an additional contribution from the last helix of CA. This result was confirmed by a separate X-ray structure analysis showing that CAI inserts into a conserved hydrophobic groove and alters the CA dimer interface. The CAI binding site is a new target for antiviral development, and CAI is the first known inhibitor directed against assembly of immature HIV-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of Gag-derived proteins.
Figure 2: Results of ELISAs showing peptide competition for phage-CAI binding to CA.
Figure 3: Inhibition of assembly of immature-like particles in vitro.
Figure 4: Inhibition of assembly of mature-like particles in vitro.
Figure 5
Figure 6: NMR chemical shift perturbation analysis.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Briggs, J.A. et al. The stoichiometry of Gag protein in HIV-1. Nat. Struct. Mol. Biol. 11, 672–675 (2004).

    Article  CAS  Google Scholar 

  2. Wiegers, K. et al. Sequential steps in human immunodeficiency virus particle maturation revealed by alterations of individual Gag polyprotein cleavage sites. J. Virol. 72, 2846–2854 (1998).

    CAS  PubMed Central  Google Scholar 

  3. Lanman, J. et al. Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat. Struct. Mol. Biol. 11, 676–677 (2004).

    Article  CAS  Google Scholar 

  4. Accola, M.A., Höglund, S. & Göttlinger, H.G. A putative alpha-helical structure which overlaps the capsid-p2 boundary in the human immunodeficiency virus type 1 Gag precursor is crucial for viral particle assembly. J. Virol. 72, 2072–2078 (1998).

    CAS  PubMed Central  Google Scholar 

  5. Gitti, R.K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231–235 (1996).

    Article  CAS  Google Scholar 

  6. Gamble, T.R. et al. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278, 849–852 (1997).

    Article  CAS  Google Scholar 

  7. Worthylake, D.K., Wang, H., Yoo, S., Sundquist, W.I. & Hill, C.P. Structures of the HIV-1 capsid protein dimerization domain at 2.6Å resolution. Acta Crystallogr. D Biol. Crystallogr. 55, 85–92 (1999).

    Article  CAS  Google Scholar 

  8. Mortuza, G.B. et al. High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431, 481–485 (2004).

    Article  CAS  Google Scholar 

  9. Li, S., Hill, C., Sundquist, W. & Finch, J. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407, 409–413 (2000).

    Article  CAS  Google Scholar 

  10. del Álamo, M., Neira, J.L. & Mateu, M.G. Thermodynamic dissection of a low affinity protein-protein interface involved in human immunodeficiency virus assembly. J. Biol. Chem. 278, 27923–27929 (2003).

    Article  Google Scholar 

  11. Lanman, J. et al. Identification of novel interactions in HIV-1 capsid protein assembly by high-resolution mass spectrometry. J. Mol. Biol. 325, 759–772 (2003).

    Article  CAS  Google Scholar 

  12. von Schwedler, U.K., Stray, K.M., Garrus, J.E. & Sundquist, W.I. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450 (2003).

    Article  CAS  Google Scholar 

  13. Ganser-Pornillos, B.K., von Schwedler, U.K., Stray, K.M., Aiken, C. & Sundquist, W.I. Assembly properties of the human immunodeficiency virus type 1 CA protein. J. Virol. 78, 2545–2552 (2004).

    Article  CAS  Google Scholar 

  14. Gross, I. et al. A conformational switch controlling HIV-1 morphogenesis. EMBO J. 19, 103–113 (2000).

    Article  CAS  Google Scholar 

  15. Campbell, S. et al. Modulation of HIV-like particle assembly in vitro by inositol phosphates. Proc. Natl. Acad. Sci. USA 98, 10875–10879 (2001).

    Article  CAS  Google Scholar 

  16. Ivanov, D., Stone, J.R., Maki, J.L., Collins, T. & Wagner, G. Mammalian SCAN domain dimer is a domain-swapped homolog of the HIV capsid C-terminal domain. Mol. Cell 17, 137–143 (2005).

    Article  CAS  Google Scholar 

  17. Niedrig, M. et al. Inhibition of infectious human immunodeficiency virus type 1 particle formation by Gag protein-derived peptides. J. Gen. Virol. 75, 1469–1474 (1994).

    Article  CAS  Google Scholar 

  18. Höglund, S. et al. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis. Antimicrob. Agents Chemother. 46, 3597–3605 (2002).

    Article  Google Scholar 

  19. Garzón, M.T. et al. The dimerization domain of the HIV-1 capsid protein binds a capsid protein-derived peptide: a biophysical characterization. Protein Sci. 13, 1512–1523 (2004).

    Article  Google Scholar 

  20. Tang, C. et al. Antiviral inhibition of the HIV-1 capsid protein. J. Mol. Biol. 327, 1013–1020 (2003).

    Article  CAS  Google Scholar 

  21. Li, F. et al. PA-457: a potent HIV inhibitor that disrupts core condensation by targeting a late step in Gag processing. Proc. Natl. Acad. Sci. USA 100, 13555–13560 (2003).

    Article  CAS  Google Scholar 

  22. Zhou, J. et al. Small-molecule inhibition of human immunodeficiency virus type 1 replication by specific targeting of the final step of virion maturation. J. Virol. 78, 922–929 (2004).

    Article  CAS  Google Scholar 

  23. Ternois, F., Sticht, J., Duquerroy, S., Kräusslich, H.-G. & Rey, A.F. Crystal structure of the HIV-1 capsid protein C-terminal domain in complex with an inhibitor of particle assembly. Nat. Struct. Mol. Biol. 12, 678–682 (2005).

    Article  CAS  Google Scholar 

  24. Kräusslich, H.-G., Fäcke, M., Heuser, A.M., Konvalinka, J. & Zentgraf, H. The spacer peptide between human immunodeficiency virus capsid and nucleocapsid proteins is essential for ordered assembly and viral infectivity. J. Virol. 69, 3407–3419 (1995).

    PubMed Central  Google Scholar 

  25. Gross, I., Hohenberg, H. & Kräusslich, H. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600 (1997).

    Article  CAS  Google Scholar 

  26. Briggs, J.A.G., Wilk, T., Welker, R., Kräusslich, H.-G. & Fuller, S.D. Structural organization of authentic, mature HIV-1 virions and cores. EMBO J. 22, 1707–1715 (2003).

    Article  CAS  Google Scholar 

  27. Newman, J.L., Butcher, E.W., Patel, D.T., Mikhaylenko, Y. & Summers, M.F. Flexibility in the P2 domain of the HIV-1 Gag polyprotein. Protein Sci. 13, 2101–2107 (2004).

    Article  CAS  Google Scholar 

  28. Lanman, J., Sexton, J., Sakalian, M. & Prevelige, P. Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro. J. Virol. 76, 6900–6908 (2002).

    Article  CAS  Google Scholar 

  29. Mateu, M.G. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein. J. Mol. Biol. 318, 519–531 (2002).

    Article  CAS  Google Scholar 

  30. Hyde-DeRuyscher, R. et al. Detection of small-molecule enzyme inhibitors with peptides isolated from phage-displayed combinatorial peptide libraries. Chem. Biol. 7, 17–25 (2000).

    Article  CAS  Google Scholar 

  31. Kattenbeck, B., von Poblotzki, A., Rohrhofer, A., Wolf, H. & Modrow, S. Inhibition of human immunodeficiency virus type 1 particle formation by alterations of defined amino acids within the C terminus of the capsid protein. J. Gen. Virol. 78, 2489–2496 (1997).

    Article  CAS  Google Scholar 

  32. Forshey, B.M., von Schwedler, U., Sundquist, W.I. & Aiken, C. Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J. Virol. 76, 5667–5677 (2002).

    Article  CAS  Google Scholar 

  33. Liang, C., Hu, J., Whitney, J.B., Kleiman, L. & Wainberg, M.A. A structurally disordered region at the C terminus of capsid plays essential roles in multimerization and membrane binding of the gag protein of human immunodeficiency virus type 1. J. Virol. 77, 1772–1783 (2003).

    Article  Google Scholar 

  34. Reicin, A.S. et al. Linker insertion mutations in the human immunodeficiency virus type 1 gag gene: effects on virion particle assembly, release, and infectivity. J. Virol. 69, 642–650 (1995).

    CAS  PubMed Central  Google Scholar 

  35. von Schwedler, U.K. et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568 (1998).

    Article  CAS  Google Scholar 

  36. Yoo, S. et al. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J. Mol. Biol. 269, 780–795 (1997).

    Article  CAS  Google Scholar 

  37. Franke, E.K., Yuan, H.E. & Luban, J. Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372, 359–362 (1994).

    Article  CAS  Google Scholar 

  38. Adachi, A. et al. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J. Virol. 59, 284–291 (1986).

    CAS  PubMed Central  Google Scholar 

  39. Ratner, L. et al. Complete nucleotide sequences of functional clones of the AIDS virus. AIDS Res. Hum. Retroviruses 3, 57–69 (1987).

    Article  CAS  Google Scholar 

  40. Kay, L.E. Pulsed-field gradient multidimensional NMR methods for the study of protein structure and dynamics. Prog. Biophys. Mol. Biol. 63, 277–299 (1995).

    Article  CAS  Google Scholar 

  41. Sattler, M., Schleucher, J. & Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 34, 93–158 (1999).

    Article  CAS  Google Scholar 

  42. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  43. Johnson, B.A. & Blevins, R.A. NMRView: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  44. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structure. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Deutsche Forschungsgemeinschaft and the DAAD-PROCOPE program. J.W. and S.F. thank the Wellcome Trust for support of the NMR facility. We thank F. Rey for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Georg Kräusslich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sticht, J., Humbert, M., Findlow, S. et al. A peptide inhibitor of HIV-1 assembly in vitro. Nat Struct Mol Biol 12, 671–677 (2005). https://doi.org/10.1038/nsmb964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing