Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The tumor suppressor p16INK4a prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity

Abstract

Inactivation of the p16INK4a tumor suppressor protein is critical for the development of human cancers, including human melanoma. However, the molecular basis of the protein's inhibitory effect on cancer development is not clear. Here we investigated a possible mechanism for p16INK4a inhibition of neoplastic transformation and UV-induced skin cancer. We show that p16INK4a suppresses the activity of c-Jun N-terminal kinases (JNKs) and that it binds to the glycine-rich loop of the N-terminal domain of JNK3. Although p16INK4a does not affect the phosphorylation of JNKs, its interaction with JNK inhibits c-Jun phosphorylation induced by UV exposure. This, in turn, interferes with cell transformation promoted by the H-Ras–JNK–c-Jun–AP-1 signaling axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro and in vivo interaction of p16INK4a with JNK proteins.
Figure 2: Binding of p16INK4a and JNK1 or JNK3.
Figure 3: Predicted model of the p16INK4a–JNK3 complex.
Figure 4: Regulation of JNK activity by p16INK4a.
Figure 5: Suppression of AP-1 activity through the p16INK4a inhibition of UV-induced JNK activity.
Figure 6: Interference of p16INK4a with JNK1 and c-Jun binding and nuclear translocation of phosphorylated JNK.
Figure 7: p16INK4a inhibition of focus formation mediated by H-Ras–JNK.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Xiong, Y., Zhang, H. & Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 7, 1572–1583 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Sherr, C.J. Parsing Ink4a/Arf: “pure” p16-null mice. Cell 106, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Caldas, C. et al. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat. Genet. 8, 27–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Serrano, M., Gomez-Lahoz, E., DePinho, R.A., Beach, D. & Bar-Sagi, D. Inhibition of ras-induced proliferation and cellular transformation by p16INK4. Science 267, 249–252 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Serrano, M. et al. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85, 27–37 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Krimpenfort, P., Quon, K.C., Mooi, W.J., Loonstra, A. & Berns, A. Loss of p16Ink4a confers susceptibility to metastatic melanoma in mice. Nature 413, 83–86 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H. & Rosdahl, I. Deletion in p16INK4a and loss of p16 expression in human skin primary and metastatic melanoma cells. Int. J. Oncol. 24, 331–335 (2004).

    PubMed  Google Scholar 

  8. Flores, J.F. et al. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 56, 5023–5032 (1996).

    CAS  PubMed  Google Scholar 

  9. Walker, G.J. et al. Virtually 100% of melanoma cell lines harbor alterations at the DNA level within CDKN2A, CDKN2B, or one of their downstream targets. Genes Chromosom. Cancer 22, 157–163 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Bode, A.M. & Dong, Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci. STKE 2003, RE2 (2003).

    Article  PubMed  Google Scholar 

  11. Sharpless, E. & Chin, L. The INK4a/ARF locus and melanoma. Oncogene 22, 3092–3098 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Recio, J.A. et al. Ink4a/arf deficiency promotes ultraviolet radiation-induced melanomagenesis. Cancer Res. 62, 6724–6730 (2002).

    CAS  PubMed  Google Scholar 

  13. Noonan, F.P. et al. Neonatal sunburn and melanoma in mice. Nature 413, 271–272 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Davis, R.J. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 268, 14553–14556 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Treisman, R. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8, 205–215 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Ip, Y.T. & Davis, R.J. Signal transduction by the c-Jun N-terminal kinase (JNK)–from inflammation to development. Curr. Opin. Cell Biol. 10, 205–219 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Huang, C., Li, J., Ma, W.Y. & Dong, Z. JNK activation is required for JB6 cell transformation induced by tumor necrosis factor-α but not by 12-O-tetradecanoylphorbol-13-acetate. J. Biol. Chem. 274, 29672–29676 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, N. et al. Suppression of skin tumorigenesis in c-Jun NH(2)-terminal kinase-2-deficient mice. Cancer Res. 61, 3908–3912 (2001).

    CAS  PubMed  Google Scholar 

  20. She, Q.B., Chen, N., Bode, A.M., Flavell, R.A. & Dong, Z. Deficiency of c-Jun-NH(2)-terminal kinase-1 in mice enhances skin tumor development by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 62, 1343–1348 (2002).

    CAS  PubMed  Google Scholar 

  21. Dong, Z., Birrer, M.J., Watts, R.G., Matrisian, L.M. & Colburn, N.H. Blocking of tumor promoter-induced AP-1 activity inhibits induced transformation in JB6 mouse epidermal cells. Proc. Natl. Acad. Sci. USA 91, 609–613 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Young, M.R. et al. Transgenic mice demonstrate AP-1 (activator protein-1) transactivation is required for tumor promotion. Proc. Natl. Acad. Sci. USA 96, 9827–9832 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zenz, R. et al. c-Jun regulates eyelid closure and skin tumor development through EGFR signaling. Dev. Cell 4, 879–889 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Derijard, B. et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025–1037 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Kallunki, T. et al. JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996–3007 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Katchalski-Katzir, E. et al. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc. Natl. Acad. Sci. USA 89, 2195–2199 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vakser, I.A. & Aflalo, C. Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins 20, 320–329 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Byeon, I.J. et al. Tumor suppressor p16INK4A: determination of solution structure and analyses of its interaction with cyclin-dependent kinase 4. Mol. Cell 1, 421–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Moran, M.F., Polakis, P., McCormick, F., Pawson, T. & Ellis, C. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol. Cell. Biol. 11, 1804–1812 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sachsenmaier, C. et al. Involvement of growth factor receptors in the mammalian UVC response. Cell 78, 963–972 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Khosravi-Far, R. et al. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16, 3923–3933 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell, I., Magliocco, A., Moyana, T., Zheng, C. & Xiang, J. Adenovirus-mediated p16INK4 gene transfer significantly suppresses human breast cancer growth. Cancer Gene Ther. 7, 1270–1278 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Quelle, D.E., Zindy, F., Ashmun, R.A. & Sherr, C.J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83, 993–1000 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Maestro, R. & Boiocchi, M. Sunlight and melanoma: an answer from MTS1 (p16). Science 267, 15–16 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Pollock, P.M., Yu, F., Qiu, L., Parsons, P.G. & Hayward, N.K. Evidence for u.v. induction of CDKN2 mutations in melanoma cell lines. Oncogene 11, 663–668 (1995).

    CAS  PubMed  Google Scholar 

  36. Kennedy, N.J. & Davis, R.J. Role of JNK in tumor development. Cell Cycle 2, 199–201 (2003).

    CAS  PubMed  Google Scholar 

  37. Kurokawa, M. et al. The evi-1 oncoprotein inhibits c-Jun N-terminal kinase and prevents stress-induced cell death. EMBO J. 19, 2958–2968 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adler, V. et al. Regulation of JNK signaling by GSTp. EMBO J. 18, 1321–1334 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Russo, A.A., Tong, L., Lee, J.O., Jeffrey, P.D. & Pavletich, N.P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395, 237–243 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Angel, P., Szabowski, A. & Schorpp-Kistner, M. Function and regulation of AP-1 subunits in skin physiology and pathology. Oncogene 20, 2413–2423 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Shaulian, E. & Karin, M. AP-1 in cell proliferation and survival. Oncogene 20, 2390–2400 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Berggren, P. et al. Detecting homozygous deletions in the CDKN2A(p16(INK4a))/ARF(p14(ARF)) gene in urinary bladder cancer using real-time quantitative PCR. Clin. Cancer Res. 9, 235–242 (2003).

    CAS  PubMed  Google Scholar 

  43. Zhong, S. et al. Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J. Biol. Chem. 276, 33213–33219 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Vakser, I.A. Protein docking for low-resolution structures. Protein Eng. 8, 371–377 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Vakser, I.A., Matar, O.G. & Lam, C.F. A systematic study of low-resolution recognition in protein–protein complexes. Proc. Natl. Acad. Sci. USA 96, 8477–8482 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clark, G.J., Cox, A.D., Graham, S.M. & Der, C.J. Biological assays for Ras transformation. Methods Enzymol. 255, 395–412 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Hormel Foundation and grants from the US National Institutes of Health. We thank R. Davis for JNKs plasmids, C. Chen and Z. Kiss for Rb−/− and CHO-K1 cell lines and A. Hansen for secretarial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zigang Dong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Specific binding assay of JNK1 or JNK3 and p16INK4a. (PDF 88 kb)

Supplementary Fig. 2

Sequence similarity of JNKs and interaction with p16INK4a. (PDF 1694 kb)

Supplementary Methods (PDF 131 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, B., Choi, H., Ko, K. et al. The tumor suppressor p16INK4a prevents cell transformation through inhibition of c-Jun phosphorylation and AP-1 activity. Nat Struct Mol Biol 12, 699–707 (2005). https://doi.org/10.1038/nsmb960

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb960

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing