Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural dissection and high-throughput screening of mannosylglycerate synthase

Abstract

The enzymatic transfer of activated mannose yields mannosides in glycoconjugates and oligo- and polysaccharides. Yet, despite its biological necessity, the mechanism by which glycosyltransferases recognize mannose and catalyze its transfer to acceptor molecules is poorly understood. Here, we report broad high-throughput screening and kinetic analyses of both natural and synthetic substrates of Rhodothermus marinus mannosylglycerate synthase (MGS), which catalyzes the formation of the stress protectant 2-O-α-D-mannosyl glycerate. The sequence of MGS indicates that it is at the cusp of inverting and retaining transferases. The structures of apo MGS and complexes with donor and acceptor molecules, including GDP-mannose, combined with mutagenesis of the binding and catalytic sites, unveil the mannosyl transfer center. Nucleotide specificity is as important in GDP-D-mannose recognition as the nature of the donor sugar.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-throughput screening of GT specificity.
Figure 2: Three-dimensional structure of MGS.
Figure 3: Observed electron density for MGS ligand complexes.
Figure 4: Comparison of GT-A fold retaining and inverting GTs.
Figure 5: A 'front-face' mechanism for glycosyl transfer with retention of anomeric configuration.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Coutinho, P., Deleury, E., Davies, G.J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    Article  CAS  Google Scholar 

  2. Chiu, C.P. et al. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat. Struct. Mol. Biol. 11, 163–170 (2004).

    Article  CAS  Google Scholar 

  3. Charnock, S.J. & Davies, G.J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1999).

    Article  CAS  Google Scholar 

  4. Vrielink, A., Rüger, W., Driessen, H.P.C. & Freemont, P.S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13, 3413–3422 (1994).

    Article  CAS  Google Scholar 

  5. Lobsanov, Y.D. et al. Structure of Kre2p/Mnt1p—a yeast α-1,2-mannosyltransferase involved in mannoprotein biosynthesis. J. Biol. Chem. 279, 17921–17931 (2004).

    Article  CAS  Google Scholar 

  6. Martins, L.O. et al. Biosynthesis of mannosylglycerate in the thermophilic bacterium Rhodothermus marinus—Biochemical and genetic characterization of a mannosylglycerate synthase. J. Biol. Chem. 274, 35407–35414 (1999).

    Article  CAS  Google Scholar 

  7. Borges, N., Marugg, J.D., Empadinhas, N., da Costa, M.S. & Santos, H. Specialized roles of the two pathways for the synthesis of mannosylglycerate in osmoadaptation and thermoadaptation of Rhodothermus marinus. J. Biol. Chem. 279, 9892–9898 (2004).

    Article  CAS  Google Scholar 

  8. Borges, N., Ramos, A., Raven, N.D.H., Sharp, R.J. & Santos, H. Comparative study of the thermostabilizing properties of mannosylglycerate and other compatible solutes on model enzymes. Extremophiles 6, 209–216 (2002).

    Article  CAS  Google Scholar 

  9. Faria, T.Q., Knapp, S., Ladenstein, R., Macanita, A.L. & Santos, H. Protein stabilisation by compatible solutes: Effect of mannosylglycerate on unfolding thermodynamics and activity of ribonuclease A. Chembiochem 4, 734–741 (2003).

    Article  Google Scholar 

  10. Yang, M., Brazier, M., Edwards, R. & Davis, B.H. High-throughput mass spectrometry monitoring for multi-substrate enzymes: determining the kinetic parameters and catalytic activities of glycosyltransferases. Chembiochem 6, 346–357 (2005).

    Article  CAS  Google Scholar 

  11. Sampaio, M.M., Santos, H. & Boos, W. Synthesis of GDP-mannose and mannosylglycerate from labeled mannose by genetically engineered Escherichia coli without loss of specific isotopic enrichment. Appl. Environ. Microbiol. 69, 233–240 (2003).

    Article  CAS  Google Scholar 

  12. Wiggins, C.A. & Munro, S. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other glycosyltransferase families. Proc. Natl. Acad. Sci. USA 95, 7945–7950 (1998).

    Article  CAS  Google Scholar 

  13. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  14. Pedersen, L.C. et al. Crystal structure of an alpha 1,4-N- acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. J. Biol. Chem. 278, 14420–14428 (2003).

    Article  CAS  Google Scholar 

  15. Persson, K. et al. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol. 8, 166–175 (2001).

    Article  CAS  Google Scholar 

  16. Campbell, J.A., Davies, G.J., Bulone, V. & Henrissat, B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino-acid similarities. Biochem. J. 326, 929–942 (1997).

    Article  CAS  Google Scholar 

  17. Lairson, L.L. et al. Intermediate trapping on a mutant retaining α- galactosyltransferase identifies an unexpected aspartate residue. J. Biol. Chem. 279, 28339–28344 (2004).

    Article  CAS  Google Scholar 

  18. Sinnott, M.L. & Jencks, W. Solvolysis of D-glucopyranosyl derivatives in mixtures of ethanol and 2,2,2-trifluoroethano. J. Am. Chem. Soc. 102, 2026–2032 (1980).

    Article  CAS  Google Scholar 

  19. Proctor, M. et al. Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of the Cellvibrio japonicus arabinanase 43A. Proc. Natl. Acad. Sci. USA 102, 2697–2702 (2005).

    Article  CAS  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  21. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D 58, 1772–1779 (2002).

    Article  Google Scholar 

  22. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  23. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  Google Scholar 

  24. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  25. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  26. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  27. Pedersen, L.C. et al. Heparan/chondroitin sulfate biosynthesis: structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275, 34580–34585 (2000).

    Article  CAS  Google Scholar 

  28. Tarbouriech, N., Charnock, S.J. & Davies, G.J. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. J. Mol. Biol. 314, 655–661 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Sheldrick (Göttingen) for assistance with SHELXD. This work was funded by Biotechnology and Biological Sciences Research Council and the Wellcome Trust. G.J.D. is a Royal Society University Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gideon J Davies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Compounds in the GAR broad screen acceptor library. (PDF 95 kb)

Supplementary Methods (PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flint, J., Taylor, E., Yang, M. et al. Structural dissection and high-throughput screening of mannosylglycerate synthase. Nat Struct Mol Biol 12, 608–614 (2005). https://doi.org/10.1038/nsmb950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing