Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states

Abstract

Molecular motors undergo cyclical conformational changes and convert chemical energy into mechanical work. The conformational dynamics of a viral packaging motor, the hexameric helicase P4 of dsRNA bacteriophage φ8, was visualized by hydrogen-deuterium exchange and high-resolution mass spectrometry. Concerted changes of exchange kinetics revealed a cooperative unit that dynamically links ATP-binding sites and the central RNA-binding channel. The cooperative unit is compatible with a structure-based model in which translocation is mediated by a swiveling helix. Deuterium labeling also revealed the transition state associated with RNA loading, which proceeds via opening of the hexameric ring. The loading mechanism is similar to that of other hexameric helicases. Hydrogen-deuterium exchange provides an important link between time-resolved spectroscopic observations and high-resolution structural snapshots of molecular machines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping of peptic fragments on P4 structure.
Figure 2: Hydrogen-deuterium exchange measured by mass spectrometry.
Figure 3: Characterization of the L1-loop deletion mutant (P4ΔLKK).
Figure 4: Deuterium incorporation during RNA loading.
Figure 5: Comparison of exchange kinetics for selected regions.
Figure 6: Model of RNA loading and the cooperative unit.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Keller, D. & Bustamante, C. The mechanochemistry of molecular motors. Biophys. J. 78, 541–556 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Delagoutte, E. & von Hippel, P.H. Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: structures and properties of isolated helicases. Quart. Rev. Biophys. 35, 431–478 (2002).

    Article  CAS  Google Scholar 

  3. Moore, S.D. & Prevelige, P.E. Jr. DNA packaging: a new class of molecular motors. Curr. Biol. 12, R96–R98 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Mancini, E.J. et al. Atomic snapshots of an RNA packaging motor reveal conformational changes linking ATP hydrolysis to RNA translocation. Cell 118, 743–755 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kainov, D.E. et al. RNA packaging device of double-stranded RNA bacteriophages, possibly as simple as hexamer of P4 protein. J. Biol. Chem. 278, 48084–48091 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Singleton, M.R., Sawaya, M.R., Ellenberger, T. & Wigley, D.B. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Patel, S.S. & Picha, K.M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Skordalakes, E. & Berger, J.M. Structure of the Rho transcription terminator: mechanism of mRNA recognition and helicase loading. Cell 114, 135–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Gai, D., Zhao, R., Li, D., Finkielstein, C.V. & Chen, X.S. Mechanisms of conformational change for a replicative hexameric helicase of SV40 large tumor antigen. Cell 119, 47–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hoofnagle, A.N., Resing, K.A. & Ahn, N.G. Protein analysis by hydrogen exchange mass spectrometry. Annu. Rev. Biophys. Biomol. Struct. 32, 1–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Englander, S.W., Sosnick, T.R., Englander, J.J. & Mayne, L. Mechanisms and uses of hydrogen exchange. Curr. Opin. Struct. Biol. 6, 18–23 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hoofnagle, A.N., Resing, K.A., Goldsmith, E.J. & Ahn, N.G. Changes in protein conformational mobility upon activation of extracellular regulated protein kinase-2 as detected by hydrogen exchange. Proc. Natl. Acad. Sci. USA 98, 956–961 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lanman, J. et al. Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat. Struct. Mol. Biol. 11, 676–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Marshall, A.G., Hendrickson, C.L. & Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1–35 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, F. et al. Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C. J. Am. Soc. Mass Spectrom. 10, 703–710 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Lisal, J., Kainov, D.E., Bamford, D.H., Thomas, G.J. Jr. & Tuma, R. Enzymatic mechanism of RNA translocation in double-stranded RNA bacteriophages. J. Biol. Chem. 279, 1343–1350 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Milne, J.S., Mayne, L., Roder, H., Wand, A.J. & Englander, S.W. Determinants of protein hydrogen exchange studied in equine cytochrome c. Protein Sci. 7, 739–745 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Englander, J.J. et al. Protein structure change studied by hydrogen-deuterium exchange, functional labeling, and mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 7057–7062 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Picha, K.M., Ahnert, P. & Patel, S.S. DNA binding in the central channel of bacteriophage T7 helicase-primase is a multistep process. Nucleotide hydrolysis is not required. Biochemistry 39, 6401–6409 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Z., Post, C.B. & Smith, D.L. Amide hydrogen exchange determined by mass spectrometry: application to rabbit muscle aldolase. Biochemistry 35, 779–791 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Frilander, M. & Bamford, D.H. In vitro packaging of the single-stranded RNA genomic precursors of the segmented double-stranded RNA bacteriophage φ6: the three segments modulate each other's packaging efficiency. J. Mol. Biol. 246, 418–428 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, D.E. & Patel, S.S. The kinetic pathway of RNA binding to the Escherichia coli transcription termination factor Rho. J. Biol. Chem. 276, 13902–13910 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Ahnert, P., Picha, K.M. & Patel, S.S. A ring-opening mechanism for DNA binding in the central channel of the T7 helicase-primase protein. EMBO J. 19, 3418–3427 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Davey, M.J., Jeruzalmi, D., Kuriyan, J. & O'Donnell, M. Motors and switches: AAA+ machines within the replisome. Nat. Rev. Mol. Cell Biol. 3, 826–835 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Mindich, L. Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage φ6. Microbiol. Mol. Biol. Rev. 63, 149–160 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kainov, D.E., Lisal, J., Bamford, D.H. & Tuma, R. Packaging motor from double-stranded RNA bacteriophage φ12 acts as an obligatory passive conduit during transcription. Nucleic Acids Res. 32, 3515–3521 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Juuti, J.T., Bamford, D.H., Tuma, R. & Thomas, G.J., Jr. Structure and NTPase activity of the RNA-translocating protein (P4) of bacteriophage φ6. J. Mol. Biol. 279, 347–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Wooll, J.O., Wrabl, J.O. & Hilser, V.J. Ensemble modulation as an origin of denaturant-independent hydrogen exchange in proteins. J. Mol. Biol. 301, 247–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Hilser, V.J. & Freire, E. Structure-based calculation of the equilibrium folding pathway of proteins. Correlation with hydrogen exchange protection factors. J. Mol. Biol. 262, 756–772 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Hilser, V.J. Modeling the native state ensemble. Methods Mol. Biol. 168, 93–116 (2001).

    CAS  PubMed  Google Scholar 

  31. Kainov, D.E., Butcher, S.J., Bamford, D.H. & Tuma, R. Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. J. Mol. Biol. 328, 791–804 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Lam, T.T. et al. Mapping of protein:protein contact surfaces by hydrogen/deuterium exchange, followed by on-line high-performance liquid chromatography-electrospray ionization Fourier-transform ion-cyclotron-resonance mass analysis. J. Chromatogr. A 982, 85–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Emmett, M.R. & Caprioli, R.M. Micro-electrospray mass spectrometry: ultra-high-sensitivity analysis of peptides and proteins. J. Am. Soc. Mass Spectrom. 5, 605–613 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Emmett, M.R., White, F.M., Hendrickson, C.L., Shi, S.D.-H. & Marshall, A.G. Application of micro-electrospray liquid chromatographic techniques to FT-ICR MS to enable high-sensitivity biological analysis. J. Am. Soc. Mass Spectrom. 9, 333–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Senko, M.W., Hendrickson, C.L., Emmett, M.R., Shi, S.D.-H. & Marshall, A.G. External accumulation of ions for enhanced electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 8, 970–976 (1997).

    Article  CAS  Google Scholar 

  36. Zhang, Z., Li, W., Logan, T.M., Li, M. & Marshall, A.G. Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR. Protein Sci. 6, 2203–2217 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, C.C., Couch, G.S., Pettersen, E.F. & Ferrin, T.E. Chimera: an extensible molecular modeling application constructed using standard components. Pac. Symp. Biocomput. 1, 724–725 (1996).

    Google Scholar 

  38. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Abu Ramadan for the software development. J.L. is supported by Viikki Graduate School in Biosciences, D.E.K is supported by the National Graduate School in Informational and Structural Biology. This work was supported by Academy of Finland grant 206926 (R.T.), the Finnish Centre of Excellence Program 2000–2005, the US National Science Foundation National High Field FT-ICR Mass Spectrometry Facility (CHE-94-13008), Florida State University and the National High Magnetic Field Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Tuma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment. (PDF 1989 kb)

Supplementary Fig. 2

Bimodal isotopic distributions during RNA loading. (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lísal, J., Lam, T., Kainov, D. et al. Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nat Struct Mol Biol 12, 460–466 (2005). https://doi.org/10.1038/nsmb927

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing