Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural mapping of CD134 residues critical for interaction with feline immunodeficiency virus

Abstract

CD134 is a primary binding receptor for feline immunodeficiency virus (FIV), and with CXCR4 facilitates infection of CD4+ T cells. Human CD134 fails to support FIV infection. To delineate the regions important for defining virus specificity of CD134, we exchanged domains between human and feline CD134. The binding site for FIV surface glycoprotein (SU) is located in domain 1, in a region distinct from the natural ligand (CD134L)-binding site. Mutagenesis showed that Asp60 and Asp62 are required for interaction with FIV, and modeling studies localized these two residues to the outer edge of domain 1. Substitutions S60D and N62D, in conjunction with H45S, R59G and V64K, imparted both FIV SU binding and receptor function to human CD134. Finally, we demonstrated that soluble CD134 facilitates infection of CD134 CXCR4+ target cells in a manner analogous to CD4 augmentation of HIV infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The binding site for FIV SU is localized in the first domain of CD134.
Figure 2: CD134 Asp60 and Asp62 are critical for interaction with FIV.
Figure 3: CD134 Asp60 and Asp62 are exposed at the upper edge of CD134.
Figure 4: Construction of a binding site for FIV in human CD134.
Figure 5: Modeling of feline and human CD134.
Figure 6: CD134L binding to CD134 is species-specific and does not block CD134-FIV interaction.
Figure 7: CXCR4-dependent FIV infection of CD134 cells is facilitated by soluble CD134.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Pedersen, N.C., Ho, E.W., Brown, M.L. & Yamamoto, J.K. Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235, 790–793 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Willett, B.J. et al. Shared usage of the chemokine receptor CXCR4 by the feline and human immunodeficiency viruses. J. Virol. 71, 6407–6415 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. de Parseval, A. & Elder, J.H. Binding of recombinant feline immunodeficiency virus surface glycoprotein to feline cells: role of CXCR4, cell-surface heparans, and an unidentified non-CXCR4 receptor. J. Virol. 75, 4528–4539 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Parseval, A., Su, S.V., Elder, J.H. & Lee, B. Specific interaction of feline immunodeficiency virus surface glycoprotein with human DC-SIGN. J. Virol. 78, 2597–2600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Parseval, A., Ngo, S. & Elder, J.H. Factors that increase effective concentration of CXCR4 dictate feline immunodeficiency virus tropism and kinetics of replication. J. Virol. 78, 9132–9143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dalgleish, A.G. et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312, 763–767 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Klatzmann, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Saphire, A.C., Bobardt, M.D., Zhang, Z., David, G. & Gallay, P.A. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol. 75, 9187–9200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geijtenbeek, T.B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Norimine, J. et al. Feline CD4 molecules expressed on feline non-lymphoid cell lines are not enough for productive infection of highly lymphotropic feline immunodeficiency virus isolates. Arch. Virol. 130, 171–178 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Parseval, A., Chatterji, U., Sun, P. & Elder, J.H. Feline immunodeficiency virus targets activated CD4+ T cells by using CD134 as a binding receptor. Proc. Natl. Acad. Sci. USA 101, 13044–13049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimojima, M. et al. Use of CD134 as a primary receptor by the feline immunodeficiency virus. Science 303, 1192–1195 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Sattentau, Q.J. & Moore, J.P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Sattentau, Q.J., Moore, J.P., Vignaux, F., Traincard, F. & Poignard, P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. J. Virol. 67, 7383–7393 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Schenten, D. et al. Effects of soluble CD4 on simian immunodeficiency virus infection of CD4-positive and CD4-negative cells. J. Virol. 73, 5373–5380 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sullivan, N. et al. CD4-induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J. Virol. 72, 4694–4703 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Latza, U. et al. The human OX40 homolog: cDNA structure, expression and chromosomal assignment of the ACT35 antigen. Eur. J. Immunol. 24, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Kwon, B.S. & Weissman, S.M. cDNA sequences of two inducible T-cell genes. Proc. Natl. Acad. Sci. USA 86, 1963–1967 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Itoh, N. et al. The polypeptide encoded by the cDNA for human cell surface antigen Fas can mediate apoptosis. Cell 66, 233–243 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Loetscher, H. et al. Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61, 351–359 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Durkop, H. et al. Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin's disease. Cell 68, 421–427 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Camerini, D., Walz, G., Loenen, W.A., Borst, J. & Seed, B. The T cell activation antigen CD27 is a member of the nerve growth factor/tumor necrosis factor receptor gene family. J. Immunol. 147, 3165–3169 (1991).

    CAS  PubMed  Google Scholar 

  23. Schall, T.J. et al. Molecular cloning and expression of a receptor for human tumor necrosis factor. Cell 61, 361–370 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, C.A. et al. A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248, 1019–1023 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Stamenkovic, I., Clark, E.A. & Seed, B. A B-lymphocyte activation molecule related to the nerve growth factor receptor and induced by cytokines in carcinomas. EMBO J. 8, 1403–1410 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Johnston, J.C. et al. Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J. Virol. 73, 4991–5000 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Banner, D.W. et al. Crystal structure of the soluble human 55 kd TNF receptor-human TNF β complex: implications for TNF receptor activation. Cell 73, 431–445 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Arthos, J. et al. Identification of the residues in human CD4 critical for the binding of HIV. Cell 57, 469–481 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Landau, N.R., Warton, M. & Littman, D.R. The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature 334, 159–162 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Sattentau, Q.J. et al. Structural analysis of the human immunodeficiency virus-binding domain of CD4. Epitope mapping with site-directed mutants and anti-idiotypes. J. Exp. Med. 170, 1319–1334 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Peterson, A. & Seed, B. Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54, 65–72 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Clayton, L.K. et al. Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gp120 binding. Nature 335, 363–366 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Mizukami, T., Fuerst, T.R., Berger, E.A. & Moss, B. Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-blocking monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proc. Natl. Acad. Sci. USA 85, 9273–9277 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schockmel, G.A., Somoza, C., Davis, S.J., Williams, A.F. & Healey, D. Construction of a binding site for human immunodeficiency virus type 1 gp120 in rat CD4. J. Exp. Med. 175, 301–304 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, J.H. et al. Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348, 411–418 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Ryu, S.E. et al. Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348, 419–426 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Naismith, J.H., Devine, T.Q., Brandhuber, B.J. & Sprang, S.R. Crystallographic evidence for dimerization of unliganded tumor necrosis factor receptor. J. Biol. Chem. 270, 13303–13307 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Naismith, J.H., Devine, T.Q., Kohno, T. & Sprang, S.R. Structures of the extracellular domain of the type I tumor necrosis factor receptor. Structure 4, 1251–1262 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Al-Shamkhani, A., Mallett, S., Brown, M.H., James, W. & Barclay, A.N. Affinity and kinetics of the interaction between soluble trimeric OX40 ligand, a member of the tumor necrosis factor superfamily, and its receptor OX40 on activated T cells. J. Biol. Chem. 272, 5275–5282 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Arch, R.H. & Thompson, C.B. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor κB. Mol. Cell. Biol. 18, 558–565 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawamata, S., Hori, T., Imura, A., Takaori-Kondo, A. & Uchiyama, T. Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-κB activation. J. Biol. Chem. 273, 5808–5814 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Prell, R.A. et al. OX40-mediated memory T cell generation is TNF receptor-associated factor 2 dependent. J. Immunol. 171, 5997–6005 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Chan, D.C., Fass, D., Berger, J.M. & Kim, P.S. Core structure of gp41 from the HIV envelope glycoprotein. Cell 89, 263–273 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Weissenhorn, W., Dessen, A., Harrison, S.C., Skehel, J.J. & Wiley, D.C. Atomic structure of the ectodomain from HIV-1 gp41. Nature 387, 426–430 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Trkola, A. et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384, 184–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Wu, L. et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 384, 179–183 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Ali, S.A. & Steinkasserer, A. PCR-ligation-PCR mutagenesis: a protocol for creating gene fusions and mutations. Biotechniques 18, 746–750 (1995).

    CAS  PubMed  Google Scholar 

  48. Phillips, T.R. et al. Comparison of two host cell range variants of feline immunodeficiency virus. J. Virol. 64, 4605–4613 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. De Clercq, E. et al. Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob. Agents Chemother. 38, 668–674 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Engelman, D.M., Steitz, T.A. & Goldman, A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu. Rev. Biophys. Chem. 15, 321–353 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Y.-C. Lin and S. de Rozières for careful reading of the manuscript and valuable suggestions and J. Wold for manuscript preparation. This research was supported by grant R01AI25825 from the Allergy and Infectious Diseases Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H Elder.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Alignment of feline and human CD134. (PDF 213 kb)

Supplementary Fig. 2

Binding of FIV SU and ACT35 mAb to feline and human CD134 mutants. (PDF 315 kb)

Supplementary Fig. 3

Competitive binding assay between CD134L and FIV SU-Fc for CD134. (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Parseval, A., Chatterji, U., Morris, G. et al. Structural mapping of CD134 residues critical for interaction with feline immunodeficiency virus. Nat Struct Mol Biol 12, 60–66 (2005). https://doi.org/10.1038/nsmb872

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb872

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing