Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into FtsZ protofilament formation

Abstract

The prokaryotic tubulin homolog FtsZ polymerizes into a ring structure essential for bacterial cell division. We have used refolded FtsZ to crystallize a tubulin-like protofilament. The N- and C-terminal domains of two consecutive subunits in the filament assemble to form the GTPase site, with the C-terminal domain providing water-polarizing residues. A domain-swapped structure of FtsZ and biochemical data on purified N- and C-terminal domains show that they are independent. This leads to a model of how FtsZ and tubulin polymerization evolved by fusing two domains. In polymerized tubulin, the nucleotide-binding pocket is occluded, which leads to nucleotide exchange being the rate-limiting step and to dynamic instability. In our FtsZ filament structure the nucleotide is exchangeable, explaining why, in this filament, nucleotide hydrolysis is the rate-limiting step during FtsZ polymerization. Furthermore, crystal structures of FtsZ in different nucleotide states reveal notably few differences.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FtsZ consists of two independent domains that can recombine noncovalently.
Figure 2: Crystal structure of a semicontinuous FtsZ protofilament.
Figure 3: Structure of the FtsZ dimer.
Figure 4: Detailed view of the intersubunit active sites in MjFtsZ and tubulin.
Figure 5: A lack of conformational changes in different FtsZ structures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Errington, J., Daniel, R.A. & Scheffers, D.J. Cytokinesis in bacteria. Microbiol. Mol. Biol. Rev. 67, 52–65 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lutkenhaus, J. & Addinall, S.G. Bacterial cell division and the Z ring. Annu. Rev. Biochem. 66, 93–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Rothfield, L., Justice, S. & Garcia-Lara, J. Bacterial cell division. Annu. Rev. Genet. 33, 423–448 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Addinall, S.G. & Holland, B. The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J. Mol. Biol. 318, 219–236 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Erickson, H.P. FtsZ, a prokaryotic homolog of tubulin? Cell 80, 367–370 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Löwe, J. & Amos, L.A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    Article  PubMed  Google Scholar 

  7. Nogales, E., Wolf, S.G. & Downing, K.H. Structure of the alpha beta tubulin dimer by electron crystallography. Nature 391, 199–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nogales, E., Downing, K.H., Amos, L.A. & Löwe, J. Tubulin and FtsZ form a distinct family of GTPases. Nat. Struct. Biol. 5, 451–458 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Nogales, E., Whittaker, M., Milligan, R.A. & Downing, K.H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Oliva, M.A. et al. Assembly of archaeal cell division protein FtsZ and a GTPase-inactive mutant into double-stranded filaments. J. Biol. Chem. 278, 33562–33570 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Erickson, H.P., Taylor, D.W., Taylor, K.A. & Bramhill, D. Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. Proc. Natl. Acad. Sci. USA 93, 519–523 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Löwe, J. & Amos, L.A. Tubulin-like protofilaments in Ca2+-induced FtsZ sheets. EMBO J. 18, 2364–2371 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Scheffers, D.J., de Wit, J.G., den Blaauwen, T. & Driessen, A.J. Substitution of a conserved aspartate allows cation-induced polymerization of FtsZ. FEBS Lett. 494, 34–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Cordell, S.C., Robinson, E.J. & Löwe, J. Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc. Natl. Acad. Sci. USA 100, 7889–7894 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Romberg, L. & Mitchison, T.J. Rate-limiting guanosine 5′-triphosphate hydrolysis during nucleotide turnover by FtsZ, a prokaryotic tubulin homologue involved in bacterial cell division. Biochemistry 43, 282–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    CAS  PubMed  Google Scholar 

  17. Mingorance, J., Rueda, S., Gomez-Puertas, P., Valencia, A. & Vicente, M. Escherichia coli FtsZ polymers contain mostly GTP and have a high nucleotide turnover. Mol. Microbiol. 41, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Huecas, S. & Andreu, J.M. Energetics of the cooperative assembly of cell division protein FtsZ and the nucleotide hydrolysis switch. J. Biol. Chem. 278, 46146–46154 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Mukherjee, A. & Lutkenhaus, J. Guanine nucleotide-dependent assembly of FtsZ into filaments. J. Bacteriol. 176, 2754–2758 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bramhill, D. & Thompson, C.M. GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc. Natl. Acad. Sci. USA 91, 5813–5817 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ben-Yehuda, S. & Losick, R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell 109, 257–266 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, C., Reedy, M. & Erickson, H.P. Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. J. Bacteriol. 182, 164–170 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Diaz, J.F. et al. Activation of cell division protein FtsZ. Control of switch loop T3 conformation by the nucleotide γ-phosphate. J. Biol. Chem. 276, 17307–17315 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Andreu, J.M., Oliva, M.A. & Monasterio, O. Reversible unfolding of FtsZ cell division proteins from archaea and bacteria. Comparison with eukaryotic tubulin folding and assembly. J. Biol. Chem. 277, 43262–43270 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Löwe, J., Li, H., Downing, K.H. & Nogales, E. Refined structure of α β-tubulin at 3.5 Å resolution. J. Mol. Biol. 313, 1045–1057 (2001).

    Article  PubMed  Google Scholar 

  26. Hyman, A.A., Chretien, D., Arnal, I. & Wade, R.H. Structural changes accompanying GTP hydrolysis in microtubules: information from a slowly hydrolyzable analogue guanylyl-(α,β)-methylene-diphosphonate. J. Cell Biol. 128, 117–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Nogales, E., Whittaker, M., Milligan, R.A. & Downing, K.H. High-resolution model of the microtubule. Cell 96, 79–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Huecas, S. & Andreu, J.M. Polymerization of nucleotide-free, GDP- and GTP-bound cell division protein FtsZ: GDP makes the difference. FEBS Lett. 569, 43–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Ravelli, R.B. et al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 428, 198–202 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Nogales, E., Wang, H.W. & Niederstrasser, H. Tubulin rings: which way do they curve? Curr. Opin. Struct. Biol. 13, 256–261 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Scheffzek, K. et al. The Ras–RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277, 333–338 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Daumke, O., Weyand, M., Chakrabarti, P.P., Vetter, I.R. & Wittinghofer, A. The GTPase-activating protein Rap1GAP uses a catalytic asparagine. Nature 429, 197–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Schindelin, H., Kisker, C., Schlessman, J.L., Howard, J.B. & Rees, D.C. Structure of ADP x AIF4(–)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370–376 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Egea, P.F. et al. Substrate twinning activates the signal recognition particle and its receptor. Nature 427, 215–221 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Focia, P.J., Shepotinovskaya, I.V., Seidler, J.A. & Freymann, D.M. Heterodimeric GTPase core of the SRP targeting complex. Science 303, 373–377 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tesmer, J.J., Berman, D.M., Gilman, A.G. & Sprang, S.R. Structure of RGS4 bound to AlF4-activated Giα1: stabilization of the transition state for GTP hydrolysis. Cell 89, 251–261 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Stock, D., Perisic, O. & Löwe, J. Nanolitre crystallisation at the MRC Laboratory of Molecular Biology. Prog. Biophys. Mol. Biol. (in the press).

  38. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  39. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  41. Miroux, B. & Walker, J.E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Henkel, R.D., van de Berg, J.L. & Walsh, R.A. A microassay for ATPase. Anal. Biochem. 169, 312–318 (1987).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Ministerio de Ciencia y Tecnologia, Spain for financial support to M.A. We also thank J.M. Andreu (Madrid) for supplying us with the MjFtsZ-W319Y plasmid. Finally, we had great support on the following beamlines: Synchtrotron Radiation Source (14.2 and 9.6) and European Synchrotron Radiation Facility (ID29 and BM14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Löwe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliva, M., Cordell, S. & Löwe, J. Structural insights into FtsZ protofilament formation. Nat Struct Mol Biol 11, 1243–1250 (2004). https://doi.org/10.1038/nsmb855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing