Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Shape-selective RNA recognition by cysteinyl-tRNA synthetase

Abstract

The crystal structure of Escherichia coli cysteinyl-tRNA synthetase (CysRS) bound to tRNACys at a resolution of 2.3 Å reveals base-specific and shape-selective interactions across an extensive protein-RNA recognition interface. The complex contains a mixed α/β C-terminal domain, which is disordered in the unliganded enzyme. This domain makes specific hydrogen bonding interactions with all three bases of the GCA anticodon. The tRNA anticodon stem is bent sharply toward the enzyme as compared with its conformation when bound to elongation factor Tu, providing an essential basis for shape-selective recognition. The CysRS structure also reveals interactions of conserved enzyme groups with the sugar-phosphate backbone in the D loop, adjacent to an unusual G15·G48 tertiary base pair previously implicated in tRNA aminoacylation. A combined mutational analysis of enzyme and tRNA groups at G15·G48 supports the notion that contacts between CysRS and the sugar-phosphate backbone contribute to recognition by indirect readout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribbon representation of the E. coli CysRS–tRNACys structure.
Figure 2: Conformational changes in tRNACys structure.
Figure 3: Recognition of the tRNA anticodon stem by CysRS.
Figure 4: Indirect readout of the tertiary core.
Figure 5: Recognition of the tRNACys anticodon loop by CysRS.
Figure 6: Surface representation of the CysRS active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Seeman, N.C., Rosenberg, J.M. & Rich, A. Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA 73, 804–808 (1976).

    Article  CAS  Google Scholar 

  2. Rhodes, D., Schwabe, J.W., Chapman, L. & Fairall, L. Towards an understanding of protein-DNA recognition. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 501–509 (1996).

    Article  CAS  Google Scholar 

  3. Gromiha, M., Siebers, J.G., Selvaraj, S., Kono, H. & Sarai, A. Intermolecular and intramolecular readout mechanisms in protein-DNA recognition. J. Mol. Biol. 337, 285–294 (2004).

    Article  Google Scholar 

  4. Otwinowski, Z. et al. Crystal structure of trp repressor/operator complex at atomic resolution. Nature 335, 321–329 (1988).

    Article  CAS  Google Scholar 

  5. Lesser, D.R., Kurpiewski, M.R., Waters, T., Connolly, B.A. & Jen-Jacobsen, L. Facilitated distortion of the DNA site enhances EcoRI endonuclease-DNA recognition. Proc. Natl. Acad. Sci. USA 90, 7548–7452 (1993).

    Article  CAS  Google Scholar 

  6. Martin, A.M., Sam, M.D., Reich, N.O. & Perona, J.J. Structural and energetic origins of indirect readout in site-specific DNA cleavage by a restriction endonuclease. Nat. Struct. Biol. 6, 269–277 (1999).

    Article  CAS  Google Scholar 

  7. Lynch, T.W., Read, E.K., Mattis, A.N., Gardner, J.F. & Rice, P.A. Integration host factor: putting a twist on protein-DNA recognition. J. Mol. Biol. 330, 493–502 (2003).

    Article  CAS  Google Scholar 

  8. Ibba, M. & Soll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).

    Article  CAS  Google Scholar 

  9. Nissan, T.A. & Perona, J.J. Alternative designs for construction of the class II transfer RNA tertiary core. RNA 6, 1585–1596 (2000).

    Article  CAS  Google Scholar 

  10. Avalos, J., Corrochano, L.M. & Brenner, S. Cysteinyl-tRNA synthetase is a direct descendent of the first aminoacyl-tRNA synthetase. FEBS Lett. 286, 176–180 (1991).

    Article  CAS  Google Scholar 

  11. Eriani, G., Dirheimer, G. & Gangloff, J. Cysteinyl-tRNA synthetase: determination of the last E. coli aminoacyl-tRNA synthetase primary structure. Nucleic Acids Res. 19, 265–269 (1991).

    Article  CAS  Google Scholar 

  12. Hou, Y.M., Shiba, K., Mottes, C. & Schimmel, P. Sequence determination and modeling of structural motifs for the smallest monomeric aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 88, 976–980 (1991).

    Article  CAS  Google Scholar 

  13. Newberry, K.J., Hou, Y.M. & Perona, J.J. Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. EMBO J. 21, 2778–2787 (2002).

    Article  CAS  Google Scholar 

  14. Levitt, M. Detailed molecular model for transfer ribonucleic acid. Nature 224, 759–763 (1969).

    Article  CAS  Google Scholar 

  15. Nissen, P., Thirup, S., Kjeldgaard, M. & Nyborg, J. The crystal structure of Cys-tRNACys-Ef-TU-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure Fold Des. 7, 143–156 (1999).

    Article  CAS  Google Scholar 

  16. Hamann, C.S. & Hou, Y.M. An RNA structural determinant for tRNA recognition. Biochemistry 36, 7967–7972 (1997).

    Article  CAS  Google Scholar 

  17. Hou, Y.M., Westof, E. & Giege, R. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc. Natl. Acad. Sci. USA 90, 6776–6780 (1993).

    Article  CAS  Google Scholar 

  18. Hou, Y.M., Sterner, T. & Bhalla, R. Evidence for a conserved relationship between an acceptor stem and a tRNA for aminoacylation. RNA 1, 707–712 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lipman, R.S. & Hou, Y.M. Aminoacylation of tRNA in the evolution of an aminoacyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 95, 13495–13500 (1998).

    Article  CAS  Google Scholar 

  20. Cavarelli, J., Delagoutte, B., Eriani, G., Gangloff, J. & Moras, D. L-arginine recognition by yeast arginyl-tRNA synthetase. EMBO J. 17, 5438–5448 (1998).

    Article  CAS  Google Scholar 

  21. Cusack, S., Yaremchuk, A. & Tukalo, M. The 2 Å crystal structure of leucyl-tRNA synthetase and its complex with a leucyl-adenylate analogue. EMBO J. 19, 2351–2361 (2000).

    Article  CAS  Google Scholar 

  22. Fukai, S. et al. Structural basis for double-sieve discrimination of L-valine from L-isoleucine and L-threonine by the complex of tRNA(Val) and valyl-tRNA synthetase. Cell 103, 793–803 (2000).

    Article  CAS  Google Scholar 

  23. Silvian, L.F., Wang, J. & Steitz, T.A. Insights into editing from an ile-tRNA structure with tRNAIle and mupirocin. Science 285, 1074–1077 (1999).

    Article  CAS  Google Scholar 

  24. Sugiura, I. et al. The 2.0 Å crystal structure of Thermus thermophilus methionyl-tRNA synthetase reveals two RNA-binding modules. Structure Fold Des. 8, 197–208 (2000).

    Article  CAS  Google Scholar 

  25. Nakama, T., Nureki, O. & Yokoyama, S. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J. Biol. Chem. 276, 47387–47393 (2001).

    Article  CAS  Google Scholar 

  26. Fukai, S. et al. Mechanism of molecular interactions for tRNA(Val) recognition by valyl-tRNA synthetase. RNA 9, 100–111 (2003).

    Article  CAS  Google Scholar 

  27. Sherlin, L.D. & Perona, J.J. tRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase. Structure 11, 591–603 (2003).

    Article  CAS  Google Scholar 

  28. Williamson, J.R. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7, 834–837 (2000).

    Article  CAS  Google Scholar 

  29. Komatsoulis, G.A. & Abelson, J. Recognition of tRNA(Cys) by Escherichia coli cysteinyl-tRNA synthetase. Biochemistry 32, 7435–7444 (1993).

    Article  CAS  Google Scholar 

  30. Burkard, M.E., Kierzek, R. & Turner, D.H. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. J. Mol. Biol. 290, 967–982 (1999).

    Article  CAS  Google Scholar 

  31. Ming, X., Smith, K., Suga, H. & Hou, Y.M. Recognition of tRNA backbone for aminoacylation with cysteine: evolution from Escherichia coli to human. J. Mol. Biol. 318, 1207–1220 (2002).

    Article  CAS  Google Scholar 

  32. Hamann, C.S. & Hou, Y.M. Probing a tRNA core that contributes to aminoacylation. J. Mol. Biol. 295, 777–789 (2000).

    Article  CAS  Google Scholar 

  33. Hamann, C.S. & Hou, Y.M. A strategy of tRNA recognition that includes determinants of RNA structure. Bioorg. Med. Chem. 5, 1011–1019 (1997).

    Article  CAS  Google Scholar 

  34. Hou, Y.M. Structural elements that contribute to an unusual tertiary interaction in a transfer RNA. Biochemistry 33, 4677–4681 (1994).

    Article  CAS  Google Scholar 

  35. Christian, T., Lipman, R.S., Evilia, C. & Hou, Y.M. Alternative design of a tRNA core for aminoacylation. J. Mol. Biol. 303, 503–514 (2000).

    Article  CAS  Google Scholar 

  36. Delagoutte, B., Moras, D. & Cavarelli, J. tRNA aminoacylation by arginyl-tRNA synthetase: induced conformations during substrates binding. EMBO J. 19, 5599–5610 (2000).

    Article  CAS  Google Scholar 

  37. Fersht, A.R. & Dingwall, C. Cysteinyl-tRNA synthetase from Escherichia coli does not need an editing mechanism to reject serine and alanine. High energy of small groups in specific molecular interactions. Biochemistry 18, 1245–1249 (1979).

    Article  CAS  Google Scholar 

  38. Zhang, C.M., Christian, T., Newberry, K.J., Perona, J.J. & Hou, Y.M. Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase. J. Mol. Biol. 327, 911–917 (2003).

    Article  CAS  Google Scholar 

  39. Zhang, C.M., Perona, J.J. & Hou, Y.M. Amino acid discrimination by a highly differentiated metal center of an aminoacyl-tRNA synthetase. Biochemistry 42, 10931–10937 (2003).

    Article  CAS  Google Scholar 

  40. Brick, P., Bhat, T.N. & Blow, D.M. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 208, 83–98 (1989).

    Article  CAS  Google Scholar 

  41. Sekine, S. et al. ATP binding by glutamyl-tRNA synthetase is switched to the productive mode by tRNA binding. EMBO J. 22, 676–688 (2003).

    Article  CAS  Google Scholar 

  42. Rould, M.A., Perona, J.J., Soll, D. & Steitz, T.A. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 Å resolution. Science 246, 1135–1142 (1989).

    Article  CAS  Google Scholar 

  43. Yang, X.L. et al. Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Proc. Natl. Acad. Sci. USA 100, 15376–15380 (2003).

    Article  CAS  Google Scholar 

  44. Perona, J.J., Swanson, R.N., Rould, M.A., Steitz, T.A. & Soll, D. Structural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes. Science 246, 1152–1154 (1989).

    Article  CAS  Google Scholar 

  45. Doublie, S., Bricogne, G., Gilmore, C. & Carter, C.W. Jr. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase. Structure 3, 17–31 (1995).

    Article  CAS  Google Scholar 

  46. Pallanck, L., Li, S. & Schulman, L.H. The anticodon and discriminator base are major determinants of cysteine tRNA identity in vivo. J. Biol. Chem. 267, 7221–7223 (1992).

    CAS  PubMed  Google Scholar 

  47. Hamann, C.S. & Hou, Y.M. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Biochemistry 34, 6527–6532 (1995).

    Article  CAS  Google Scholar 

  48. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S. The 2.9 Å crystal structure T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science 263, 1404–1410 (1994).

    Article  CAS  Google Scholar 

  49. Sekine, S. et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J. Mol. Biol. 256, 685–700 (1996).

    Article  CAS  Google Scholar 

  50. Shimada, A., Nureki, O., Goto, M., Takahashi, S. & Yokoyama, S. Structural and mutational studies of the recognition of the arginine tRNA-specific major identity element, A20, by arginyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 98, 13537–13542 (2001).

    Article  CAS  Google Scholar 

  51. Sherlin, L.D. et al. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. J. Mol. Biol. 299, 431–446 (2000).

    Article  CAS  Google Scholar 

  52. Giege, R., Sissler, M. & Florentz, C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res. 26, 5017–5035 (1998).

    Article  CAS  Google Scholar 

  53. Grodberg, J.D., Jr. OmpT encodes the Escherichia coli outer membrane protease that cleaves T7 RNA polymerase during purification. J. Bacteriol. 170, 1245–1258 (1988).

    Article  CAS  Google Scholar 

  54. Lyakhov, D. et al. Site-specific mutagenesis of the Lys-172 residue in phage T7 RNA polymerase: characterization of the transcriptional properties of mutant proteins. Mol. Biol. 26, 679–687 (1992).

    Google Scholar 

  55. Newberry, K.J., Kohn, J., Hou, Y.M. & Perona, J.J. Crystallization and preliminary diffraction analysis of Escherichia coli cysteinyl-tRNA synthetase. Acta Crystallogr. D 55, 1046–1047 (1999).

    Article  CAS  Google Scholar 

  56. Sherlin, L.D. et al. Chemical and enzymatic synthesis of tRNAs for high-throughput crystallization. RNA 7, 1671–1678 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bullock, T.L., Uter, N., Nissan, T.A. & Perona, J.J. Amino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants. J. Mol. Biol. 328, 395–408 (2003).

    Article  CAS  Google Scholar 

  58. Chen, Z. & Ruffner, D.E. Modified crush-and-soak method for recovering oligodeoxynucleotides from polyacrylamide gel. Biotechniques 21, 820–822 (1996).

    Article  CAS  Google Scholar 

  59. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  60. Brunger, A.T. et al. Crystallography & NMR system. A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  61. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  62. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta. Crystallogr. D 50, 760–763 (1994).

  63. Fersht, A.R. et al. Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14, 1–4 (1975).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Héroux for data collection at the National Synchrotron Light Source, Brookhaven National Laboratory, and T. Christian for assisting with preparation of the T7 transcript of tRNACys. This work was supported by US National Institutes of Health grants GM63713 (to J.J.P.) and GM56662 (to Y.M.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J Perona.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of CysRS enzymes. (PDF 178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauenstein, S., Zhang, CM., Hou, YM. et al. Shape-selective RNA recognition by cysteinyl-tRNA synthetase. Nat Struct Mol Biol 11, 1134–1141 (2004). https://doi.org/10.1038/nsmb849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing