Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Substrate-assisted catalysis of peptide bond formation by the ribosome

Abstract

The ribosome accelerates the rate of peptide bond formation by at least 107-fold, but the catalytic mechanism remains controversial. Here we report evidence that a functional group on one of the tRNA substrates plays an essential catalytic role in the reaction. Substitution of the P-site tRNA A76 2′ OH with 2′ H or 2′ F results in at least a 106-fold reduction in the rate of peptide bond formation, but does not affect binding of the modified substrates. Such substrate-assisted catalysis is relatively uncommon among modern protein enzymes, but it is a property predicted to be essential for the evolution of enzymatic function. These results suggest that substrate assistance has been retained as a catalytic strategy during the evolution of the prebiotic peptidyl transferase center into the modern ribosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The peptidyl transferase reaction and characterization of modified tRNALys containing A76, dA76 or fA76.
Figure 2: The rapid kinetic peptidyl transfer assay.
Figure 3: Peptidyl donor activity of modified tRNAs.
Figure 4: P-site occupancy by modified tRNAs.

Similar content being viewed by others

References

  1. Rodnina, M.V. & Wintermeyer, W. Peptide bond formation on the ribosome: structure and mechanism. Curr. Opin. Struct. Biol. 13, 334–340 (2003).

    Article  CAS  Google Scholar 

  2. Schmeing, T.M. et al. A pre-translocational intermediate in protein synthesis observed in crystals of enzymatically active 50S subunits. Nat. Struct. Biol. 9, 225–230 (2002).

    CAS  PubMed  Google Scholar 

  3. Bruice, T.C. & Fife, T.H. Hydroxyl group catalysis 3. Nature of neighboring hydroxyl group assistance in alkaline hydrolysis of ester bond. J. Am. Chem. Soc. 84, 1973–1979 (1962).

    Article  CAS  Google Scholar 

  4. Nissen, P., Hansen, J., Ban, N., Moore, P.B. & Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930 (2000).

    Article  CAS  Google Scholar 

  5. Muth, G.W., Ortoleva-Donnelly, L. & Strobel, S.A. A single adenosine with a neutral pK(a) in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).

    Article  CAS  Google Scholar 

  6. Polacek, N., Gaynor, M., Yassin, A. & Mankin, A.S. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Nature 411, 498–501 (2001).

    Article  CAS  Google Scholar 

  7. Youngman, E.M., Brunelle, J.L., Kochaniak, A.B. & Green, R. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Cell 117, 589–599 (2004).

    Article  CAS  Google Scholar 

  8. Beringer, M., Adio, S., Wintermeyer, W. & Rodnina, M. The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. RNA 9, 919–922 (2003).

    Article  CAS  Google Scholar 

  9. Thompson, J. et al. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Proc. Natl. Acad. Sci. USA 98, 9002–9007 (2001).

    Article  CAS  Google Scholar 

  10. Sievers, A., Beringer, M., Rodnina, M.V. & Wolfenden, R. The ribosome as an entropy trap. Proc. Natl. Acad. Sci. USA 101, 7897–7901 (2004).

    Article  CAS  Google Scholar 

  11. Hecht, S.M., Kozarich, J.W. & Schmidt, F.J. Isomeric phenylalanyl-transfer-RNAs—position of aminoacyl moiety during protein-biosynthesis. Proc. Natl. Acad. Sci. USA 71, 4317–4321 (1974).

    Article  CAS  Google Scholar 

  12. Wagner, T., Cramer, F. & Sprinzl, M. Activity of the 2′ and 3′ isomers of aminoacyl transfer ribonucleic-acid in the in vitro peptide elongation on Escherichia coli ribosomes. Biochemistry 21, 1521–1529 (1982).

    Article  CAS  Google Scholar 

  13. Wagner, T. & Sprinzl, M. Inhibition of ribosomal translocation by peptidyl transfer ribonucleic-acid analogs. Biochemistry 22, 94–98 (1983).

    Article  CAS  Google Scholar 

  14. Quiggle, K., Kumar, G., Ott, T.W., Ryu, E.K. & Chladek, S. Amindacyl derivates of nucleosides, nucleotides and polynucleotides 34. Donor site of ribosomal peptidyltransferase - investigation of substrate-specificity using 2′(3′)-O-(N-acylaminoacyl)dinucleoside phosphates as models of the 3′ terminus of N-acylaminoacyl transfer ribonucleic-acid. Biochemistry 20, 3480–3485 (1981).

    Article  CAS  Google Scholar 

  15. Dorner, S., Panuschka, C., Schmid, W. & Barta, A. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2′-OH to activity. Nucleic Acids Res. 31, 6536–6542 (2003).

    Article  CAS  Google Scholar 

  16. Griffin, B.E. & Reese, C.B. Some observations on mechanism of acylation process in protein synthesis. Proc. Natl. Acad. Sci. USA 51, 440–444 (1964).

    Article  CAS  Google Scholar 

  17. Hansen, J.L., Schmeing, T.M., Moore, P.B. & Steitz, T.A. Structural insights into peptide bond formation. Proc. Natl. Acad. Sci. USA 99, 11670–11675 (2002).

    Article  CAS  Google Scholar 

  18. Das, G.K., Bhattacharyya, D. & Burma, D.P. A possible mechanism of peptide bond formation on ribosome without mediation of peptidyl transferase. J. Theor. Biol. 200, 193–205 (1999).

    Article  CAS  Google Scholar 

  19. Chamberlin, S.I., Merino, E.J. & Weeks, K.M. Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups. Proc. Natl. Acad. Sci. USA 99, 14688–14693 (2002).

    Article  CAS  Google Scholar 

  20. Katunin, V.I., Muth, G.W., Strobel, S.A., Wintermeyer, W. & Rodnina, M.V. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol. Cell 10, 339–346 (2002).

    Article  CAS  Google Scholar 

  21. Sprinzl, M. & Sternbach, H. Enzymic modification of the C-C-A terminus of tRNA. 59, 182–190 (1979).

  22. Fredrick, K. & Noller, H.F. Catalysis of ribosomal translocation by sparsomycin. Science 300, 1159–1162 (2003).

    Article  CAS  Google Scholar 

  23. Moazed, D. & Noller, H.F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. 57, 585–597 (1989).

  24. Strobel, S.A. & Ortoleva-Donnelly, L. A hydrogen-bonding triad stabilizes the chemical transition state of a group I ribozyme. Chem. Biol. 6, 153–165 (1999).

    Article  CAS  Google Scholar 

  25. Herschlag, D., Eckstein, F. & Cech, T.R. Contributions of 2′-hydroxyl groups of the RNA substrate to binding and catalysis by the Tetrahymena ribozyme—n energetic picture of an active-site composed of RNA. Biochemistry 32, 8299–8311 (1993).

    Article  CAS  Google Scholar 

  26. Herschlag, D., Eckstein, F. & Cech, T.R. The importance of being ribose at the cleavage site in the Tetrahymena ribozyme reaction. Biochemistry 32, 8312–8321 (1993).

    Article  CAS  Google Scholar 

  27. Hocquet, A., Leulliot, N. & Ghomi, M. Ground-state properties of nucleic acid constituents studied by density functional calculations. 3. Role of sugar puckering and base orientation on the energetics and geometry of 2′-deoxyribonucleosides and ribonucleosides. J. Phys. Chem. B 104, 4560–4568 (2000).

    Article  CAS  Google Scholar 

  28. Uesugi, S., Miki, H., Ikehara, M., Iwahashi, H. & Kyogoku, Y. Linear relationship between electronegativity of 2′-substituents and conformation of adenine nucleosides. Tetrahedron Lett. 20, 4073–4076 (1979).

    Article  Google Scholar 

  29. Sjogren, A.S., Pettersson, E., Sjoberg, B.M. & Stromberg, R. Metal ion interaction with cosubstrate in self-splicing of group I introns. Nucleic Acids Res. 25, 648–653 (1997).

    Article  CAS  Google Scholar 

  30. Shan, S.O. & Herschlag, D. Probing the role of metal ions in RNA catalysis: Kinetic and thermodynamic characterization of a metal ion interaction with the 2′-moiety of the guanosine nucleophile in the Tetrahymena group I ribozyme. Biochemistry 38, 10958–10975 (1999).

    Article  CAS  Google Scholar 

  31. Adams, P.L., Stahley, M.R., Kosek, A.B., Wang, J. & Strobel, S.A. Crystal structure of a self-splicing group I intron with both exons. Nature 430, 45–50 (2004).

    Article  CAS  Google Scholar 

  32. Bass, B.L. & Cech, T.R. Ribozyme inhibitors: deoxyguanosine and dideoxyguanosine are competitive inhibitors of self-splicing of the Tetrahymena ribosomal ribonucleic acid precursor. Biochemistry 25, 4473–4477 (1986).

    Article  CAS  Google Scholar 

  33. Moran, S., Kierzek, R. & Turner, D.H. Binding of guanosine and 3′ splice site analogs to a group-I ribozyme—interactions with functional-groups of guanosine and with additional nucleotides. Biochemistry 32, 5247–5256 (1993).

    Article  CAS  Google Scholar 

  34. Nakano, S., Chadalavada, D.M. & Bevilacqua, P.C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000).

    Article  CAS  Google Scholar 

  35. Perrotta, A.T., Shih, I.H. & Been, M.D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999).

    Article  CAS  Google Scholar 

  36. Bevilacqua, P.C., Brown, T.S., Nakano, S. & Yajima, R. Catalytic roles for proton transfer and protonation in ribozymes. Biopolymers 73, 90–109 (2004).

    Article  CAS  Google Scholar 

  37. Dall'Acqua, W. & Carter, P. Substrate-assisted catalysis: Molecular basis and biological significance. Protein Sci. 9, 1–9 (2000).

    Article  CAS  Google Scholar 

  38. Carter, P. & Wells, J.A. Engineering enzyme specificity by substrate-assisted catalysis. Science 237, 394–399 (1987).

    Article  CAS  Google Scholar 

  39. Woese, C.R. Tanslation: In retrospect and prospect. RNA 7, 1055–1067 (2001).

    Article  CAS  Google Scholar 

  40. Zakharova, O.D. et al. Structural constraints in the HIV-1 reverse trancriptase-primer/template complex for the initiation of DNA synthesis from primer tRNA(Lys3). Biochemistry 37, 13343–13348 (1998).

    Article  CAS  Google Scholar 

  41. Pawlik, R.T., Littlechild, J., Pon, C. & Gualerzi, C. Purification and properties of Escherichia-coli translational initiation-factors. Biochemistry Int. 2, 421–428 (1981).

    CAS  Google Scholar 

  42. Schmitt, E., Mechulam, Y., Fromant, M., Plateau, P. & Blanquet, S. Crystal structure at 1.2 angstrom resolution and active site mapping of Escherichia coli peptidyl-tRNA hydrolase. EMBO J. 16, 4760–4769 (1997).

    Article  CAS  Google Scholar 

  43. Moazed, D. & Noller, H.F. Sites of interaction of the CCA end of peptidyl-transfer RNA with 23s ribosomal-RNA. Proc. Natl. Acad. Sci. USA 88, 3725–3728 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ambrogelly for the gift of E. coli lysyl-tRNA synthetase and A. Weiner for the gift of pET-22-CCA plasmid containing His6-tagged CCA-adding enzyme. We thank E. De La Cruz for helpful discussions and J. Lorsch and T. Steitz for comments on the manuscript. This work was supported by an American Cancer Society Beginning Investigator award to S.A.S., a US National Science Foundation predoctoral fellowship to J.S.W., an Erwin Schroedinger fellowship (J2172) to S.D. and US National Institutes of Health R01 and Howard Hughes Medical Institute funding for R.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A Strobel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinger, J., Parnell, K., Dorner, S. et al. Substrate-assisted catalysis of peptide bond formation by the ribosome. Nat Struct Mol Biol 11, 1101–1106 (2004). https://doi.org/10.1038/nsmb841

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb841

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing