Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

tRNA selection and kinetic proofreading in translation

Abstract

Using single-molecule methods we observed the stepwise movement of aminoacyl-tRNA (aa-tRNA) into the ribosome during selection and kinetic proofreading using single-molecule fluorescence resonance energy transfer (smFRET). Intermediate states in the pathway of tRNA delivery were observed using antibiotics and nonhydrolyzable GTP analogs. We identified three unambiguous FRET states corresponding to initial codon recognition, GTPase-activated and fully accommodated states. The antibiotic tetracycline blocks progression of aa-tRNA from the initial codon recognition state, whereas cleavage of the sarcin-ricin loop impedes progression from the GTPase-activated state. Our data support a model in which ribosomal recognition of correct codon-anticodon pairs drives rotational movement of the incoming complex of EF-Tu–GTP–aa-tRNA toward peptidyl-tRNA during selection on the ribosome. We propose a mechanistic model of initial selection and proofreading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule fluorescence intensity and FRET time traces.
Figure 2: Contour plots of the time evolution of population FRET.
Figure 3: A revised model for tRNA selection at the A site inferred from smFRET data (based on the scheme described in ref. 17) schematizing EF-Tu-regulated movements of aa-tRNA into the accommodated state (0.75 FRET).

Similar content being viewed by others

References

  1. Ramakrishnan, V. Ribosome structure and the mechanism of translation. Cell 108, 557–572 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Hazlett, T.L., Johnson, A.E. & Jameson, D.M. Time-resolved fluorescence studies on the ternary complex formed between bacterial elongation factor Tu, guanosine 5′-triphosphate, and phenylalanyl-tRNAPhe. Biochemistry 28, 4109–4117 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Gavrilova, L.P., Perminova, I.N. & Spirin, A.S. Elongation factor Tu can reduce translation errors in poly(U)-directed cell-free systems. J. Mol. Biol. 149, 69–78 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Gavrilova, L.P., Kostiashkina, O.E., Koteliansky, V.E., Rutkevitch, N.M. & Spirin, A.S. Factor-free (“non-enzymic”) and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J. Mol. Biol. 101, 537–552 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. Rodnina, M.V. & Wintermeyer, W. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Trends Biochem. Sci. 26, 124–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Gromadski, K.B. & Rodnina, M.V. Kinetic determinants of high-fidelity tRNA discrimination on the ribosome. Mol. Cell 13, 191–200 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Hamel, E., Koka, M. & Nakamoto, T. Requirement of an Escherichia coli 50S ribosomal protein component for effective interaction of the ribosome with T and G factors and with guanosine triphosphate. J. Biol. Chem. 247, 805–814 (1972).

    CAS  PubMed  Google Scholar 

  8. Liljas, A. & Gudkov, A.T. The structure and dynamics of ribosomal protein L12. Biochimie 69, 1043–1047 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Rodnina, M.V. & Wintermeyer, W. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Annu. Rev. Biochem. 70, 415–435 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Rodnina, M.V. et al. GTPases mechanisms and functions of translation factors on the ribosome (Review). Biol. Chem. 381, 377–387 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Gale, E.F., Cundliffe, E., Reynolds, P.E., Richmond, M.H. & Waring, M.J. The Molecular Basis of Antibiotic Action (Wiley, London, 1981).

    Google Scholar 

  12. Parker, J. Errors and alternatives in reading the universal genetic code. Microbiol. Rev. 53, 273–298 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Grosjean, H.J., Henau, S. & Crothers, D.M. On the physical basis for ambiguity in genetic coding interactions. Proc. Natl. Acad. Sci. USA 75, 610–614 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hopfield, J.J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. USA 71, 4135–4139 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ninio, J. Kinetic amplification of enzyme discrimination. Biochimie 57, 587–595 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Thompson, R.C. & Dix, D.B. Accuracy in protein synthesis. A kinetic study of the reaction of poly(U)-programmed ribosomes with a leucyl-tRNA2 elongation factor Tu-GTP complex. J. Biol. Chem. 257, 6677–6682 (1982).

    CAS  Google Scholar 

  17. Pape, T., Wintermeyer, W. & Rodina, M.W. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome. Eur. J. Mol. Biol. 18, 3800–3807 (1999).

    Article  CAS  Google Scholar 

  18. Fourmy, D., Recht, M.I., Blanchard, S.C. & Puglisi, J.D. Structure of the A site of E. coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274, 1367–1371 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshizawa, S., Fourmy, D. & Puglisi, J.D. Recognition of the codon-anticodon helix by ribosomal RNA. Science 285, 1722–1725 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Ogle, J.M. et al. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292, 897–902 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Ogle, J.M., Carter, A.P. & Ramakrishnan, V. Insights into the decoding mechanism from recent ribosome structures. Trends Biochem. Sci. 28, 259–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Piepenburg, O. et al. Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. Biochemistry 39, 1734–1738 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Powers, T. & Noller, H.F. The 530 loop of 16S rRNA: a signal to EF-Tu? Trends Genet. 10, 27–31 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Valle, M. et al. Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat. Struct. Biol. 10, 899–906 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Watson, B.S. et al. Macromolecular arrangement in the aminoacyl-tRNA.elongation factor Tu.GTP ternary complex. A fluorescence energy transfer study. Biochemistry 34, 7904–7912 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Blanchard, S.C., Kim, H.D., Gonzalez, R.L. Jr., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Plumbridge, J.A., Baumert, H.G., Ehrenberg, M. & Rigler, R. Characterisation of a new, fully active fluorescent derivative of E. coli tRNA Phe. Nucleic Acids Res. 8, 827–843 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cundliffe, E. Antibiotics and prokaryotic ribosomes: action interaction and resistance. In Ribosomes, Structure, Function, and Genetics. Proceedings of the 9th Steenbock Symposium (eds. Chambliss, G. et al.) 555–581 (University Park Press, Baltimore, 1980).

    Google Scholar 

  29. Rodnina, M.V., Fricke, R. & Wintermeyer, W. Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. Biochemistry 33, 12267–12275 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Vogeley, L., Palm, G.J., Mesters, J.R. & Hilgenfeld, R. Conformational change of elongation factor Tu (EF-Tu) induced by antibiotic binding. Crystal structure of the complex between EF-Tu.GDP and aurodox. J. Biol. Chem. 276, 17149–17155 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wolf, H., Chinali, G. & Parmeggiani, A. Mechanism of the inhibition of protein synthesis by kirromycin. Eur. J. Biochem. 75, 67–75 (1977).

    Article  CAS  PubMed  Google Scholar 

  32. Moazed, D., Robertson, J.M. & Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334, 362–364 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Kurland, C.G., Hughes, D. & Ehrenberg, M. Limitations of Translational Accuracy 979–1004 (American Society for Microbiology Press, Washington, DC, 1996).

    Google Scholar 

  35. Bilgin, N. & Ehrenberg, M. Mutations in 23S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. J. Mol. Biol. 235, 813–824 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Valle, M. et al. Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J. 21, 3557–3567 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stark, H. et al. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex. Nat. Struct. Biol. 9, 849–854 (2002).

    CAS  PubMed  Google Scholar 

  38. Pape, T., Wintermeyer, W. & Rodnina, M.V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 17, 7490–7497 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brodersen, D.E. et al. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103, 1143–1154 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Gordon, J. Hydrolysis of guanosine 5′-triphosphate associated with binding of aminoacyl transfer ribonucleic acid to ribosomes. J. Biol. Chem. 244, 5680–5686 (1969).

    CAS  PubMed  Google Scholar 

  41. Ogle, J.M., Murphy, F.V., Tarry, M.J. & Ramakrishnan, V. Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111, 721–732 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Thompson, R.C., Dix, D.B., Gerson, R.B. & Karim, A.M. Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J. Biol. Chem. 256, 6676–6681 (1981).

    CAS  PubMed  Google Scholar 

  43. Janiak, F. et al. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Biochemistry 29, 4268–4277 (1990).

    Article  CAS  PubMed  Google Scholar 

  44. O'Connor, M.O. & Dahlberg, A.E. The involvement of two distinct regions of 23S ribosomal RNA in tRNA selection. J. Mol. Biol. 254, 838–847 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Muth, G.W., Chen, L., Kosek, A.B. & Strobel, S.A. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. RNA 7, 1403–1415 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bayfield, M.A., Dahlberg, A.E., Schulmeister, U., Dorner, S. & Barta, A. A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Proc. Natl. Acad. Sci. USA 98, 10096–10101 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (20).

Download references

Acknowledgements

S.C.B. is supported by the Giannini Family Foundation, and R.L.G. is supported by the American Cancer Society. Restrictocin was a gift of C. Correll (University of Chicago). This work was supported by grants to J.D.P. from the US National Institutes of Health (GM51266) and the David and Lucille Packard Foundation, to S.C. from the US National Science Foundation, the US National Aeronautics and Space Administration and the US Air Force Office of Scientific Research, and to S.C. and J.D.P. from the David and Lucille Packard Foundation Interdisciplinary Science Program (grant 2000-01671). The authors thank E. Lau for technical support, J. Hoch for suggestions relating to fluorescence quenching, E.V. Puglisi for critical discussions and scientific input, and M. Dorywalska and J. Choy for comments on the written manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven Chu or Joseph D Puglisi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Histogram analysis of FRET states achieved after EF-Tu(GTP)Phe-tRNAPhe delivery to surface immobilized ribosome complexes. (PDF 58 kb)

Supplementary Fig. 2

FRET arrival time plot. (PDF 58 kb)

Supplementary Fig. 3

Time evolution of FRET states in the delivery of EF-Tu(GTP)Phe-tRNAPhe (Cy5-acp3U) to surface immobilized 70S complexes initiated with fMet-tRNAfMet (Cy3-s4U) in the P site and a phenylalanine codon (UUU) in the A site. (PDF 58 kb)

Supplementary Fig. 4

Lifetime analysis of the 0.35 FRET state in tetracycline-stalled EF-Tu(GTP)Phe-tRNAPhe delivery to the ribosome. (PDF 36 kb)

Supplementary Fig. 5

The lifetime of the 0.5 FRET state (pre-GTP hydrolysis). GDPNP is a non-hydrolyzable GTP analogue. (PDF 370 kb)

Supplementary Fig. 6

Cleavage of the SRL within tight coupled-70S particles was achieved using the enzyme restrictocin. (PDF 114 kb)

Supplementary Fig. 7

EF-Tu(GTP)Phe-tRNAPhe (Cy5-acp3U) is stalled in the 0.5 FRET state when delivered to immobilized ribosome complexes cleaved at the SRL. (PDF 29 kb)

Supplementary Fig. 8

Lifetime analysis of the 0.35 FRET state in delivery of EF-Tu(GDPNP)Phe-tRNAPhe to ribosome complexes programmed with a cognate (UUU). (PDF 29 kb)

Supplementary Fig. 9

Lifetime analysis of the 0.35 FRET state prior to transition to the zero FRET state in delivery of EF-Tu(GTP)Phe-tRNAPhe to ribosome complexes programmed with a cognate (UUU) and near-cognate (CUU) codon. (PDF 32 kb)

Supplementary Table 1

Fidelity calculations. (PDF 25 kb)

Supplementary Methods (PDF 54 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanchard, S., Gonzalez, R., Kim, H. et al. tRNA selection and kinetic proofreading in translation. Nat Struct Mol Biol 11, 1008–1014 (2004). https://doi.org/10.1038/nsmb831

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing