Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

eIF4G is required for the pioneer round of translation in mammalian cells

Abstract

Nonsense-mediated mRNA decay (NMD) in mammalian cells targets cap-binding protein 80 (CBP80)-bound mRNA during or after a pioneer round of translation. It is unknown whether eukaryotic translation initiation factor 4G (eIF4G) functions in the pioneer round. We show that baculovirus-produced CBP80 and CBP20 independently interact with eIF4GI. The interactions between eIF4G and the heterodimer CBP80/20 suggest that eIF4G has a function in the pioneer initiation complex rather than merely a presence during remodeling to the steady-state complex. First, NMD is inhibited upon eIF4G cleavage by HIV-2 or poliovirus 2A protease. Second, eIF4GI coimmunopurifies with pre-mRNA, indicating that it associates with transcripts before the pioneer round. Third, eIF4G immunopurifies with Upf NMD factors and eIF4AIII, which are constituents of the pioneer translation initiation complex. We propose a model in which eIF4G serves to connect CBP80/20 with other initiation factors during the pioneer round of translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Baculovirus-produced and purified CBP20-His and CBP80-His interact with cellular eIF4G and exogenously produced myc-eIF4GI using far-western analysis.
Figure 2: Evidence that three regions of eIF4GI independently interact with CBP80 based on coimmunopurifications using Cos cells.
Figure 3: CBP80 coimmunopurifies with HA-eIF4GII.
Figure 4: eIF4G associates with intron-containing pre-mRNA, the Upf2 and Upf3X NMD factors in an RNA-dependent manner, and the EJC component eIF4AIII.
Figure 5: Evidence that eIF4G functions in NMD: the kinetics of eIF4G cleavage by HIV-2 protease correlates with an inhibition of NMD.
Figure 6: Additional evidence that eIF4G functions in NMD: the kinetics of eIF4G cleavage by poliovirus 2A (PV 2A) protease correlates with an inhibition of NMD.
Figure 7: Model for the pioneer translation initiation complex in comparison to its product, the steady-state translation initiation complex.

Similar content being viewed by others

References

  1. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Maquat, L.E. Nonsense-mediated mRNA decay: a comparative analysis of different species. Curr. Genomics 5, 175–190 (2004).

    Article  CAS  Google Scholar 

  3. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Le Hir, H., Moore, M.J. & Maquat, L.E. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, V.N., Kataoka, N. & Dreyfuss, G. Role of the nonsense-mediated decay factor hUpf3 in the splicing-dependent exon-exon junction complex. Science 293, 1832–1836 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Belgrader, P., Cheng, J., Zhou, X., Stephenson, L.S. & Maquat, L.E. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life. Mol. Cell. Biol. 14, 8219–8228 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cheng, J. & Maquat, L.E. Nonsense codons can reduce the abundance of nuclear mRNA without affecting the abundance of pre-mRNA or the half-life of cytoplasmic mRNA. Mol. Cell. Biol. 13, 1892–1902 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lejeune, F., Li, X. & Maquat, L.E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675–687 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. McKendrick, L., Thompson, E., Ferreira, J., Morley, S.J. & Lewis, J.D. Interaction of eukaryotic translation initiation factor 4G with the nuclear cap-binding complex provides a link between nuclear and cytoplasmic functions of the m(7) guanosine cap. Mol. Cell. Biol. 21, 3632–3641 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Byrd, M.P., Zamora, M. & Lloyd, R.E. Generation of multiple isoforms of eukaryotic translation initiation factor 4GI by use of alternate translation initiation codons. Mol. Cell. Biol. 22, 4499–4511 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coldwell, M.J., Hashemzadeh-Bonehi, L., Hinton, T.M., Morley, S.J. & Pain, V.M. Expression of fragments of translation initiation factor eIF4GI reveals a nuclear localisation signal within the N-terminal apoptotic cleavage fragment N-FAG. J. Cell Sci. 117, 2545–2555 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Gingras, A.C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Morley, S.J., Curtis, P.S. & Pain, V.M. eIF4G: translation's mystery factor begins to yield its secrets. RNA 3, 1085–1104 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Preiss, T. & Hentze, M.W. From factors to mechanisms: translation and translational control in eukaryotes. Curr. Opin. Genet. Dev. 9, 515–521 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Caron, S., Charon, M., Cramer, E., Sonenberg, N. & Dusanter-Fourt, I. Selective modification of eukaryotic initiation factor 4F (eIF4F) at the onset of cell differentiation: recruitment of eIF4GII and long-lasting phosphorylation of eIF4E. Mol. Cell. Biol. 24, 4920–4928 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imataka, H. & Sonenberg, N. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17, 6940–6947 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, W., Belsham, G.J. & Proud, C.G. Eukaryotic initiation factors 4A (eIF4A) and 4G (eIF4G) mutually interact in a 1:1 ratio in vivo. J. Biol. Chem. 276, 29111–29115 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Chan, C.C. et al. eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Aravind, L. & Koonin, E.V. Eukaryote-specific domains in translation initiation factors: implications for translation regulation and evolution of the translation system. Genome Res. 10, 1172–1184 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ponting, C.P. Novel eIF4G domain homologues linking mRNA translation with nonsense-mediated mRNA decay. Trends Biochem. Sci. 25, 423–426 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Mazza, C., Segref, A., Mattaj, I.W. & Cusack, S. Co-crystallization of the human nuclear cap-binding complex with a m7GpppG cap analogue using protein engineering. Acta Crystallogr. D 58, 2194–2197 (2002).

    Article  PubMed  Google Scholar 

  31. Alvarez, E., Menendez-Arias, L. & Carrasco, L. The eukaryotic translation initiation factor 4GI is cleaved by different retroviral proteases. J. Virol. 77, 12392–12400 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Mader, S., Lee, H., Pause, A. & Sonenberg, N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4γ and the translational repressors 4E-binding proteins. Mol. Cell. Biol. 15, 4990–4997 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fortes, P. et al. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol. Cell 6, 191–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Roy, G. et al. Paip1 interacts with poly(A) binding protein through two independent binding motifs. Mol. Cell. Biol. 22, 3769–3782 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baron-Benhamou, J., Fortes, P., Inada, T., Preiss, T. & Hentze, M.W. The interaction of the cap-binding complex (CBC) with eIF4G is dispensable for translation in yeast. RNA 9, 654–662 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thompson, J.F., Hayes, L.S. & Lloyd, D.B. Modulation of firefly luciferase stability and impact on studies of gene regulation. Gene 103, 171–177 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Zhang, J., Sun, X., Qian, Y. & Maquat, L.E. Intron function in the nonsense-mediated decay of β-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Moriarty, P.M., Reddy, C.C. & Maquat, L.E. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 18, 2932–2939 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazza, C., Ohno, M., Segref, A., Mattaj, I.W. & Cusack, S. Crystal structure of the human nuclear cap binding complex. Mol. Cell 8, 383–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Das, B., Guo, Z., Russo, P., Chartrand, P. & Sherman, F. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol. Cell. Biol. 20, 2827–2838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maderazo, A.B., Belk, J.P., He, F. & Jacobson, A. Nonsense-containing mRNAs that accumulate in the absence of a functional nonsense-mediated mRNA decay pathway are destabilized rapidly upon its restitution. Mol. Cell. Biol. 23, 842–851 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91, 457–466 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Berger, F.G. & Szoka, P. Biosynthesis of the major urinary proteins in mouse liver: a biochemical genetic study. Biochem. Genet. 19, 1261–1273 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. Imataka, H., Gradi, A. & Sonenberg, N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17, 7480–7489 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lamphear, B.J., Kirchweger, R., Skern, T. & Rhoads, R.E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J. Biol. Chem. 270, 21975–21983 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Fraser, C.S. et al. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40 S ribosomal subunits in vitro. J. Biol. Chem. 279, 8946–8956 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Marissen, W.E., Gradi, A., Sonenberg, N. & Lloyd, R.E. Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis. Cell Death Differ. 7, 1234–1243 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Coldwell, L. McKendrick and S. Morley for pmyc-eIF4GI (1–1600) and derivatives, pBS-His-CBP80, anti-eIF4G and anti-PAPB; N. Sonenberg for anti-eIF4GII, pCMV-HA-eIF4GII and pcDNA3-HA-eIF4AIII; P. Mitchell and D. Tollervey for anti-Rrp4; K. Borden for the GST-eIF4E expression vector; J. Lewis for pRSET-CBP20; H. Baumann and B. Held for anti-MUP; T. Ohlmann for HIV-1 and HIV-2 protease expression vectors and R. Lloyd for the polio 2A protease expression vector. We are grateful to R. Lloyd, T. Ohlmann and S. Cusack for helpful conversations, Y.K. Kim for comments on the manuscript, and M. Kmieciak for help generating figures. This work was supported by US National Institutes of Health grants to L.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E Maquat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lejeune, F., Ranganathan, A. & Maquat, L. eIF4G is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol 11, 992–1000 (2004). https://doi.org/10.1038/nsmb824

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb824

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing