Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An antibiotic factory caught in action

Abstract

The synthesis of aromatic polyketides, such as actinorhodin, tetracycline and doxorubicin, begins with the formation of a polyketide chain. In type II polyketide synthases (PKSs), chains are polymerized by the heterodimeric ketosynthase–chain length factor (KS-CLF). Here we present the 2.0-Å structure of the actinorhodin KS-CLF, which shows polyketides being elongated inside an amphipathic tunnel 17 Å in length at the heterodimer interface. The structure resolves many of the questions about the roles of KS and CLF. Although CLF regulates chain length, it does not have an active site; KS must catalyze both chain initiation and elongation. We provide evidence that the first cyclization of the polyketide occurs within the KS-CLF tunnel. The mechanistic details of this central PKS polymerase could guide biosynthetic chemists in designing new pharmaceuticals and polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Octaketide production by the actinorhodin minimal PKS.
Figure 2: KS-CLF complementarity.
Figure 3: The polyketide tunnel.
Figure 4: Polyketide intermediates.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hopwood, D.A. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97, 2465–2498 (1997).

    Article  CAS  Google Scholar 

  2. Rawlings, B.J. Biosynthesis of polyketides (other than actinomycete macrolides). Nat. Prod. Rep. 16, 425–484 (1999).

    Article  CAS  Google Scholar 

  3. Dreier, J., Shah, A.N. & Khosla, C. Kinetic analysis of the actinorhodin aromatic polyketide synthase. J. Biol. Chem. 274, 25108–25112 (1999).

    Article  CAS  Google Scholar 

  4. Carreras, C.W. & Khosla, C. Purification and in vitro reconstitution of the essential protein components of an aromatic polyketide synthase. Biochemistry 37, 2084–2088 (1998).

    Article  CAS  Google Scholar 

  5. McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. & Khosla, C. Rational design of aromatic polyketide natural products by recombinant assembly of enzymatic subunits. Nature 375, 549–554 (1995).

    Article  CAS  Google Scholar 

  6. Tang, Y., Tsai, S.C. & Khosla, C. Polyketide chain length control by chain length factor. J. Am. Chem. Soc. 125, 12708–12709 (2003).

    Article  CAS  Google Scholar 

  7. He, M., Varoglu, M. & Sherman, D.H. Structural modeling and site-directed mutagenesis of the actinorhodin β-ketoacyl-acyl carrier protein synthase. J. Bacteriol. 182, 2619–2623 (2000).

    Article  CAS  Google Scholar 

  8. Mathieu, M. et al. The 2.8 Å crystal structure of peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: a five-layered αβαβα structure constructed from two core domains of identical topology. Structure 2, 797–808 (1994).

    Article  CAS  Google Scholar 

  9. Huang, W. et al. Crystal structure of β-ketoacyl-acyl carrier protein synthase II from E. coli reveals the molecular architecture of condensing enzymes. EMBO J. 17, 1183–1191 (1998).

    Article  CAS  Google Scholar 

  10. Sherman, D.H., Kim, E.S., Bibb, M.J. & Hopwood, D.A. Functional replacement of genes for individual polyketide synthase components in Streptomyces coelicolor A3(2) by heterologous genes from a different polyketide pathway. J. Bacteriol. 174, 6184–6190 (1992).

    Article  CAS  Google Scholar 

  11. Bisang, C. et al. A chain initiation factor common to both modular and aromatic polyketide synthases. Nature 401, 502–505 (1999).

    Article  CAS  Google Scholar 

  12. Witkowski, A., Joshi, A.K., Lindqvist, Y. & Smith, S. Conversion of a β-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine. Biochemistry 38, 11643–11650 (1999).

    Article  CAS  Google Scholar 

  13. Fernandez-Moreno, M.A., Martinez, E., Boto L., Hopwood, D.A. & Malpartida, F. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3(2) including the polyketide synthase for the antibiotic actinorhodin. J. Biol. Chem. 267, 19278–19290 (1992).

    CAS  PubMed  Google Scholar 

  14. Harris, T.M. & Harris, C.M. Biomimetic syntheses of aromatic polyketide metabolites. Pure Appl. Chem. 58, 283–294 (1986).

    Article  CAS  Google Scholar 

  15. Dreier, J. & Khosla, C. Mechanistic analysis of a type II polyketide synthase. Role of conserved residues in the β-ketoacyl synthase–chain length factor heterodimer. Biochemistry 39, 2088–2095 (2000).

    Article  CAS  Google Scholar 

  16. Tang, Y., Lee, T.S. & Khosla, C. Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases. PLoS Biol. 2, 227–238 (2004).

    Article  CAS  Google Scholar 

  17. Ferrer, J.L., Jez, J.M., Bowman, M.E., Dixon, R.A. & Noel, J.P. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat. Struct. Biol. 6, 775–784 (1999).

    Article  CAS  Google Scholar 

  18. McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. & Khosla, C. Engineered biosynthesis of novel polyketides: manipulation and analysis of an aromatic polyketide synthase with unproven catalytic specificities. J. Am. Chem. Soc. 115, 11671–11675 (1993).

    Article  CAS  Google Scholar 

  19. Summers, R.G., Wendt-Pienkowski, E., Motamedi, H., & Hutchinson, C.R. The tcmVI region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase. J. Bacteriol. 175, 7571–7580 (1993).

    Article  CAS  Google Scholar 

  20. Kramer, P.J. et al. Rational design and engineered biosynthesis of a novel 18-carbon aromatic polyketide. J. Am. Chem. Soc. 119, 635–639 (1997).

    Article  CAS  Google Scholar 

  21. Keatinge-Clay, A.T. et al. Catalysis, specificity, and ACP docking site of Streptomyces coelicolor malonyl-CoA:ACP transacylase. Structure (Camb.) 11, 147–154 (2003).

    Article  CAS  Google Scholar 

  22. Crump, M.P. et al. Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2). Biochemistry 36, 6000–6008 (1997).

    Article  CAS  Google Scholar 

  23. Sciara, G. et al. The structure of ActVA-Orf6, a novel type of monooxygenase involved in actinorhodin biosynthesis. EMBO J. 22, 205–215 (2003).

    Article  CAS  Google Scholar 

  24. Pan, H. et al. Crystal structure of the priming β-ketosynthase from the R1128 polyketide biosynthetic pathway. Structure (Camb.) 10, 1559–1568 (2002).

    Article  CAS  Google Scholar 

  25. McDaniel, R., Ebert-Khosla, S., Hopwood, D.A. & Khosla, C. Engineered biosynthesis of novel polyketides. Science 262, 1546–1550 (1993).

    Article  CAS  Google Scholar 

  26. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  27. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  28. Biemann, K. Appendix 5. Nomenclature for peptide fragment ions (positive ions). Methods Enzymol. 193, 886–887 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Tang and S. Kobayashi for valuable conversations about KS-CLF biochemistry and help in transforming into and purifying from S. coelicolor. Research was supported by US National Institutes of Health (NIH) Cancer Institute grants CA 63081 (R.M.S.) and CA 77248 (C.K.). A.T.K. also received a fellowship from the Achievement Rewards for College Scientists Foundation. D.A.M. and K.F.M. were supported by US NIH National Center for Research Resources grants RR 01614 and RR 12961 (to the UCSF MS Facility, director A.L. Burlingame).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M Stroud.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

KS-CLF secondary structure. (PDF 305 kb)

Supplementary Fig. 2

The proposed CLF active site. (PDF 354 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keatinge-Clay, A., Maltby, D., Medzihradszky, K. et al. An antibiotic factory caught in action. Nat Struct Mol Biol 11, 888–893 (2004). https://doi.org/10.1038/nsmb808

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb808

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing