Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nucleosomes facilitate their own invasion

Abstract

DNA wrapped in nucleosomes is sterically occluded, creating obstacles for polymerase, regulatory, remodeling, repair and recombination complexes, which require access to the wrapped DNA. How such complexes recognize and gain access to their DNA target sites is not known. Here we report the direct detection of a dynamic equilibrium conformational transition in nucleosomes that greatly increases the distance between the end of the nucleosomal DNA and the histone core. We quantified the equilibrium constant for this transition under physiological conditions. As predicted by these findings, addition of LexA protein to nucleosomes containing the LexA target site drives this conformational equilibrium toward the unwrapped, accessible state, simultaneously allowing stable LexA binding. This inherent property of nucleosomes allows any protein, whether an energy-dependent machine or a passive binder, to gain access even to buried stretches of nucleosomal DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET systems for analysis of equilibrium conformational changes of nucleosomal DNA.
Figure 2: Dynamic equilibrium unwrapping of nucleosomal DNA in physiological [NaCl].
Figure 3: Site-specific protein binding is linked to partial DNA unwrapping.
Figure 4: Native gel analysis for LexA binding to naked DNA and nucleosomes.
Figure 5: Model linking equilibrium conformational fluctuations of nucleosomes to nucleosome activity.

Similar content being viewed by others

References

  1. Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).

    Article  CAS  Google Scholar 

  2. Fragoso, G., John, S., Roberts, M.S. & Hager, G.L. Nucleosome positioning on the MMTV LTR results from the frequency-biased occupancy of multiple frames. Genes Dev. 9, 1933–1947 (1995).

    Article  CAS  Google Scholar 

  3. Felsenfeld, G. Chromatin unfolds. Cell 86, 13–19 (1996).

    Article  CAS  Google Scholar 

  4. Kornberg, R.D. & Lorch, Y. Chromatin-modifying and -remodeling complexes. Curr. Opin. Genet. Dev. 9, 148–151 (1999).

    Article  CAS  Google Scholar 

  5. Ahmad, K. & Henikoff, S. Epigenetic consequences of nucleosome dynamics. Cell 111, 281–284 (2002).

    Article  CAS  Google Scholar 

  6. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  Google Scholar 

  7. Kornberg, R.D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  Google Scholar 

  8. Narlikar, G.J., Fan, H.Y. & Kingston, R.E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475–487 (2002).

    Article  CAS  Google Scholar 

  9. Fan, H.-Y., He, X., Kingston, R.E. & Narlikar, G.J. Distinct strategies to make nucleosomal DNA accessible. Mol. Cell 11, 1311–1322 (2003).

    Article  CAS  Google Scholar 

  10. Kassabov, S.R., Zhang, B., Persinger, J. & Bartholomew, B. SWI/SNF unwraps, slides, and rewraps the nucleosome. Mol. Cell 11, 391–403 (2003).

    Article  CAS  Google Scholar 

  11. Längst, G. & Becker, P.B. ISWI induces nucleosome sliding on nicked DNA. Mol. Cell 8, 1085–1092 (2001).

    Article  Google Scholar 

  12. Polach, K.J. & Widom, J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254, 130–149 (1995).

    Article  CAS  Google Scholar 

  13. Polach, K.J. & Widom, J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258, 800–812 (1996).

    Article  CAS  Google Scholar 

  14. Felsenfeld, G. Quantitative approaches to problems of eukaryotic gene expression. Biophys. Chem. 100, 607–613 (2003).

    Article  CAS  Google Scholar 

  15. Miller, J.A. & Widom, J. Collaborative competition mechanism for gene activation in vivo. Mol. Cell. Biol. 23, 1623–1632 (2003).

    Article  CAS  Google Scholar 

  16. Lorch, Y., LaPointe, J.W. & Kornberg, R.D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  Google Scholar 

  17. Taylor, I.C.A., Workman, J.L., Schuetz, T.J. & Kingston, R.E. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5, 1285–1298 (1991).

    Article  CAS  Google Scholar 

  18. Vettese-Dadey, M., Walter, P., Chen, H., Juan, L.-J. & Workman, J.L. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14, 970–981 (1994).

    Article  CAS  Google Scholar 

  19. Owen-Hughes, T. & Workman, J.L. Remodeling the chromatin structure of a nucleosome array by transcription factor-targeted trans-displacement of histones. EMBO J. 15, 4702–4712 (1996).

    Article  CAS  Google Scholar 

  20. Owen-Hughes, T., Utley, R.T., Cote, J., Peterson, C.L. & Workman, J.L. Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273, 513–516 (1996).

    Article  CAS  Google Scholar 

  21. Ura, K., Hayes, J.J. & Wolffe, A.P. A positive role for nucleosome mobility in the transcriptional activity of chromatin templates: restriction by linker histones. EMBO J. 14, 3752–3765 (1995).

    Article  CAS  Google Scholar 

  22. Meersseman, G., Pennings, S. & Bradbury, E.M. Mobile nucleosomes—a general behavior. EMBO J. 11, 2951–2959 (1992).

    Article  CAS  Google Scholar 

  23. Anderson, J.D., Thåström, A. & Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation. Mol. Cell. Biol. 22, 7147–7157 (2002).

    Article  CAS  Google Scholar 

  24. Richmond, T.J. & Widom, J. Nucleosome and chromatin structure. In Chromatin Structure and Gene Expression: Frontiers in Molecular Biology 2/e (eds. Elgin, S. & Workman, J.L.) (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  25. Whitehouse, I., Flaus, A., Havas, K. & Owen-Hughes, T. Mechanisms for ATP-dependent chromatin remodelling. Biochem. Soc. Trans. 28, 376–379 (2000).

    Article  CAS  Google Scholar 

  26. Varga-Weisz, P.D. & Becker, P.B. Chromatin-remodeling factors: machines that regulate? Curr. Biol. 10, 346–353 (1998).

    Article  CAS  Google Scholar 

  27. Clegg, R.M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 211, 353–388 (1992).

    Article  CAS  Google Scholar 

  28. Ha, T. et al. Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641 (2002).

    Article  CAS  Google Scholar 

  29. van Holde, K.E. Chromatin (Springer, New York, 1989).

    Book  Google Scholar 

  30. Manning, G.S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q. Rev. Biophys. 11, 179–246 (1978).

    Article  CAS  Google Scholar 

  31. Polach, K.J. & Widom, J. Restriction enzymes as probes of nucleosome stability. Methods Enzymol. 304, 278–298 (1999).

    Article  CAS  Google Scholar 

  32. Anderson, J.D. & Widom, J. Sequence- and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. J. Mol. Biol. 296, 979–987 (2000).

    Article  CAS  Google Scholar 

  33. Feynman, R.P., Leighton, R.B. & Sands, M. The Feynman Lectures on Physics (Addison-Wesley, Reading, Massachusetts, USA, 1963).

    Google Scholar 

  34. Peterson, C.L. & Logie, C. Recruitment of chromatin remodeling machines. J. Cell. Biochem. 78, 179–185 (2000).

    Article  CAS  Google Scholar 

  35. Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276, 19–42 (1998).

    Article  CAS  Google Scholar 

  36. Dorigo, B., Schalch, T., Bystricky, K. & Richmond, T.J. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 327, 85–96 (2003).

    Article  CAS  Google Scholar 

  37. Luger, K., Rechsteiner, T.J. & Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 304, 3–19 (1999).

    Article  CAS  Google Scholar 

  38. Little, J.W. et al. Cleavage of LexA repressor. Methods Enzymol. 244, 266–284 (1994).

    Article  CAS  Google Scholar 

  39. Thåström, A., Bingham, L.M. & Widom, J. Nucleosomal locations of dominant DNA sequence motifs for histone-DNA interactions and nucleosome positioning. J. Mol. Biol. 338, 695–709 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Richmond and J. Hayes for X. laevis histone expression plasmids and J. Little for the LexA expression plasmid. We acknowledge the use of instruments in the Keck Biophysics Facility at Northwestern University. This work was supported by grants from the US National Institutes of Health to J.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Widom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

[Mg2+] negligibly affects DNA unwrapping in physiological [NaCl]. (PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Widom, J. Nucleosomes facilitate their own invasion. Nat Struct Mol Biol 11, 763–769 (2004). https://doi.org/10.1038/nsmb801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb801

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing