Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of the p300 HAT domain via a novel activation loop

Abstract

The transcriptional coactivator p300 is a histone acetyltransferase (HAT) whose function is critical for regulating gene expression in mammalian cells. However, the molecular events that regulate p300 HAT activity are poorly understood. We evaluated autoacetylation of the p300 HAT protein domain to determine its function. Using expressed protein ligation, the p300 HAT protein domain was generated in hypoacetylated form and found to have reduced catalytic activity. This basal catalytic rate was stimulated by autoacetylation of several key lysine sites within an apparent activation loop motif. This post-translational modification and catalytic regulation of p300 HAT activity is conceptually analogous to the activation of most protein kinases by autophosphorylation. We therefore propose that this autoregulatory loop could influence the impact of p300 on a wide variety of signaling and transcriptional events.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and partial proteolysis of p300(1195–1673) HAT domain.
Figure 2: Expression and purification of semisynthetic p300 HAT domain by expressed protein ligation.
Figure 3: Autoacetylation of p300.
Figure 4: A proteolytically sensitive loop region that regulates p300 HAT activity.
Figure 5: Role of p300 autoacetylation in vivo.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ogryzko, V.V., Schiltz, R.L., Russanova, V., Howard, B.H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953– 959 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Bannister, A.J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641– 643 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Goodman, R.H. & Smolik, S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 14, 1553– 1577 (2000).

    CAS  PubMed  Google Scholar 

  4. Gayther, S.A. et al. Mutations truncating the EP300 acetylase in human cancers. Nat. Genet. 24, 300– 303 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14, 33– 41 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Bandyopadhyay, D. et al. Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res. 62, 6231– 6239 (2002).

    CAS  PubMed  Google Scholar 

  7. Muraoka, M. et al. p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12, 1565– 1569 (1996).

    CAS  PubMed  Google Scholar 

  8. Deguchi, K. et al. MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell 3, 259– 271 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Ross, C.A. Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington's disease and related disorders. Neuron 35, 819– 822 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Gusterson, R.J., Jazrawi, E., Adcock, I.M. & Latchman, D.S. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J. Biol. Chem. 278, 6838– 6847 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Chan, H.M. & La Thangue, N.B. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J. Cell Sci. 114, 2363– 2373 (2001).

    CAS  PubMed  Google Scholar 

  12. Girdwood, D. et al. p300 Transcriptional repression is mediated by SUMO modification. Mol. Cell 11, 1043– 1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Yadav, N. et al. Specific protein methylation defects and gene expression perturbations in coactivator-associated arginine methyltransferase 1-deficient mice. Proc. Natl. Acad. Sci. USA 100, 6464– 6468 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chevillard-Briet, M., Trouche, D. & Vandel, L. Control of CBP co-activating activity by arginine methylation. EMBO J. 21, 5457– 5466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Banerjee, A.C. et al. The adenovirus E1A 289R and 243R proteins inhibit the phosphorylation of p300. Oncogene 9, 1733– 1737 (1994).

    CAS  PubMed  Google Scholar 

  16. Yaciuk, P. & Moran, E. Analysis with specific polyclonal antiserum indicates that the E1A-associated 300-kDa product is a stable nuclear phosphoprotein that undergoes cell cycle phase-specific modification. Mol. Cell. Biol. 11, 5389– 5397 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grossman, S.R. et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300, 342– 344 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hamamori, Y. et al. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96, 405– 413 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Thompson, P.R., Kurooka, H., Nakatani, Y. & Cole, P.A. Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J. Biol. Chem. 276, 33721– 33729 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Roth, S.Y., Denu, J.M. & Allis, C.D. Histone acetyltransferases. Annu. Rev. Biochem. 70, 81– 120 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Marmorstein, R. Structure of histone acetyltransferases. J. Mol. Biol. 311, 433– 444 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bordoli, L., Netsch, M., Luthi, U., Lutz, W. & Eckner, R. Plant orthologs of p300/CBP: conservation of a core domain in metazoan p300/CBP acetyltransferase-related proteins. Nucleic Acids Res. 29, 589– 597 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705– 6710 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Evans, T.C. Jr., Benner, J. & Xu, M.Q. Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. 7, 2256– 2264 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Biemann, K. Contributions of mass spectrometry to peptide and protein structure. Biomed. Environ. Mass Spectrom. 16, 99– 111 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Costanzo, A. et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell 9, 175– 186 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Hong, R. & Chakravarti, D. The human proliferating cell nuclear antigen regulates transcriptional coactivator p300 activity and promotes transcriptional repression. J. Biol. Chem. 278, 44505– 44513 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Seo, S.B. et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell 104, 119– 130 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Turlais, F. et al. High-throughput screening for identification of small molecule inhibitors of histone acetyltransferases using scintillating microplates (FlashPlate). Anal. Biochem. 298, 62– 68 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Lau, O.D. et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol. Cell 5, 589– 595 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Huse, M. & Kuriyan, J. The conformational plasticity of protein kinases. Cell 109, 275– 282 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Adams, J.A. Activation loop phosphorylation and catalysis in protein kinases: is there functional evidence for the autoinhibitor model? Biochemistry 42, 601– 607 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Winston, F. & Allis, C.D. The bromodomain: a chromatin-targeting module? Nat. Struct. Biol. 6, 601– 604 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Riddles, P.W., Blakeley, R.L. & Zerner, B. Reassessment of Ellman's reagent. Methods Enzymol. 91, 49– 60 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673– 4680 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, Z.Q., Li, J., Sachs, L.M., Cole, P.A. & Wong, J. A role for cofactor-cofactor and cofactor-histone interaction in targeting of CBP/p300, SWI/SNF and mediator for transcription. EMBO J. 22, 2146– 2155 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institutes of Health to P.A.C. and J.W. and from the Ellison Medical Foundation to P.A.C., by a Canadian Institutes for Health Research postdoctoral fellowship to P.R.T., and by grants from AIRC, MURST-Cofin and MURST-FIRB to M.L. W.A. was supported by a National Research Fellowship Award. We thank C. Wolberger, M. Ott and J. Boeke for helpful discussions and for reagents. We thank N. Rust for technical assistance. We thank D. Leahy, R. Alani and J. Liu for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A Cole.

Ethics declarations

Competing interests

Q.G. works for Cell Signaling Technology Inc. and could benefit by selling antibody. R.J.C. is a paid consultant for Shimadzu Co. and has licensed his invention to the company.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, P., Wang, D., Wang, L. et al. Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol 11, 308–315 (2004). https://doi.org/10.1038/nsmb740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing