Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog

Abstract

Sialic acid terminates oligosaccharide chains on mammalian and microbial cell surfaces, playing critical roles in recognition and adherence. The enzymes that transfer the sialic acid moiety from cytidine-5′-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal positions of these key glycoconjugates are known as sialyltransferases. Despite their important biological roles, little is understood about the mechanism or molecular structure of these membrane-associated enzymes. We report the first structure of a sialyltransferase, that of CstII from Campylobacter jejuni, a highly prevalent foodborne pathogen. Our structural, mutagenesis and kinetic data provide support for a novel mode of substrate binding and glycosyl transfer mechanism, including essential roles of a histidine (general base) and two tyrosine residues (coordination of the phosphate leaving group). This work provides a framework for understanding the activity of several sialyltransferases, from bacterial to human, and for the structure-based design of specific inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction scheme of CstII.
Figure 2: The overall architecture of CstIIΔ32.
Figure 3: The active site of CstIIΔ32.
Figure 4: The donor substrate analog CMP-3FNeuAc.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Vyas, A.A. & Schnaar, R.L. Brain gangliosides: functional ligands for myelin stability and the control of nerve regeneration. Biochimie 83, 677–682 (2001).

    Article  CAS  Google Scholar 

  2. Lloyd, K.O. & Furukawa, K. Biosynthesis and functions of gangliosides: recent advances. Glycoconj. J. 15, 627–636 (1998).

    Article  CAS  Google Scholar 

  3. Guerry, P. et al. Phase variation of Campylobacter jejuni 81–176 lipooligosaccharide affects ganglioside mimicry and invasiveness in vitro. Infect. Immun. 70, 787–793 (2002).

    Article  CAS  Google Scholar 

  4. Penner, J.L. & Aspinall, G.O. Diversity of lipopolysaccharide structures in Campylobacter jejuni. J. Infect. Dis. 176 Suppl 2, S135–S138 (1997).

    Article  CAS  Google Scholar 

  5. Endtz, H.P. et al. Molecular characterization of Campylobacter jejuni from patients with Guillain-Barre and Miller Fisher syndromes. J. Clin. Microbiol. 38, 2297–2301 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilbert, M. et al. Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz 1H and 13C NMR analysis. J. Biol. Chem. 275, 3896–3906 (2000).

    Article  CAS  Google Scholar 

  7. Gilbert, M. et al. The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, Campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem. 277, 327–337 (2002).

    Article  CAS  Google Scholar 

  8. Coutinho, P.M., Deleury, E., Davies, G.J. & Henrissat, B. An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317 (2003).

    Article  CAS  Google Scholar 

  9. Rossmann, M.G. & Argos, P. The taxonomy of binding sites in proteins. Mol. Cell. Biochem. 21, 161–182 (1978).

    Article  CAS  Google Scholar 

  10. Charnock, S.J. & Davies, G.J. Structure of the nucleotide-diphospho-sugar transferase, SpsA from Bacillus subtilis, in native and nucleotide-complexed forms. Biochemistry 38, 6380–6385 (1999).

    Article  CAS  Google Scholar 

  11. Persson, K. et al. Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat. Struct. Biol. 8, 166–175 (2001).

    Article  CAS  Google Scholar 

  12. Unligil, U.M. et al. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. EMBO J. 19, 5269–5280 (2000).

    Article  CAS  Google Scholar 

  13. Vrielink, A., Ruger, W., Driessen, H.P. & Freemont, P.S. Crystal structure of the DNA modifying enzyme β-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. EMBO J. 13, 3413–3422 (1994).

    Article  CAS  Google Scholar 

  14. Ha, S., Walker, D., Shi, Y. & Walker, S. The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9, 1045–1052 (2000).

    Article  CAS  Google Scholar 

  15. Gibson, R.P., Turkenburg, J.P., Charnock, S.J., Lloyd, R. & Davies, G.J. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem. Biol. 9, 1337–1346 (2002).

    Article  CAS  Google Scholar 

  16. Gibbons, B.J., Roach, P.J. & Hurley, T.D. Crystal structure of the autocatalytic initiator of glycogen biosynthesis, glycogenin. J. Mol. Biol. 319, 463–477 (2002).

    Article  CAS  Google Scholar 

  17. Timm, D.E., Liu, J., Baker, L.J. & Harris, R.A. Crystal structure of thiamin pyrophosphokinase. J. Mol. Biol. 310, 195–204 (2001).

    Article  CAS  Google Scholar 

  18. Stura, E.A. et al. Comparison of AMP and NADH binding to glycogen phosphorylase b. J. Mol. Biol. 170, 529–565 (1983).

    Article  CAS  Google Scholar 

  19. Burkart, M.D. et al. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Bioorg. Med. Chem. 8, 1937–1946 (2000).

    Article  CAS  Google Scholar 

  20. Buschiazzo, A. et al. Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO. J. 19, 16–24 (2000).

    Article  CAS  Google Scholar 

  21. Burmeister, W.P., Ruigrok, R.W. & Cusack, S. The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 11, 49–56 (1992).

    Article  CAS  Google Scholar 

  22. Crennell, S., Garman, E., Laver, G., Vimr, E. & Taylor, G. Crystal structure of Vibrio cholerae neuraminidase reveals dual lectin-like domains in addition to the catalytic domain. Structure 2, 535–544 (1994).

    Article  CAS  Google Scholar 

  23. Crennell, S., Takimoto, T., Portner, A. & Taylor, G. Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase. Nat. Struct. Biol. 7, 1068–1074 (2000).

    Article  CAS  Google Scholar 

  24. Crennell, S.J., Garman, E.F., Laver, W.G., Vimr, E.R. & Taylor, G.L. Crystal structure of a bacterial sialidase (from Salmonella typhimurium LT2) shows the same fold as an influenza virus neuraminidase. Proc. Natl. Acad. Sci. USA 90, 9852–9856 (1993).

    Article  CAS  Google Scholar 

  25. Crennell, S.J. et al. The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution. J. Mol. Biol. 259, 264–280 (1996).

    Article  CAS  Google Scholar 

  26. Gaskell, A., Crennell, S. & Taylor, G. The three domains of a bacterial sialidase: A β-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 3, 1197–1205 (1995).

    Article  CAS  Google Scholar 

  27. Luo, Y., Li, S.C., Chou, M.Y., Li, Y.T. & Luo, M. The crystal structure of an intramolecular trans-sialidase with a NeuAc[α]2→3Gal specificity. Structure 6, 521–530 (1998).

    Article  CAS  Google Scholar 

  28. Luo, Y., Li, S.C., Li, Y.T. & Luo, M. The 1.8 Å structures of leech intramolecular trans-sialidase complexes: evidence of its enzymatic mechanism. J. Mol. Biol. 285, 323–332 (1999).

    Article  CAS  Google Scholar 

  29. Amaya, M.F., Buschiazzo, A., Nguyen, T. & Alzari, P.M. The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J. Mol. Biol. 325, 773–784 (2003).

    Article  CAS  Google Scholar 

  30. Datta, A.K. & Paulson, J.C. The sialyltransferase “sialylmotif” participates in binding the donor substrate CMP-NeuAc. J. Biol. Chem. 270, 1497–1500 (1995).

    Article  CAS  Google Scholar 

  31. Wiggins, C.A.R. & Munro, S. Activity of the yeast MNN1 α-1,3-mannosyltransferase requires a motif conserved in many other families of glycosyltransferases. Proc. Natl. Acad. Sci. USA 95, 7945–7950 (1998).

    Article  CAS  Google Scholar 

  32. Hagen, F.K., Hazes, B., Raffo, R., deSa, D. & Tabak, L.A. Structure-function analysis of the UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase. Essential residues lie in a predicted active site cleft resembling a lactose repressor fold. J. Biol. Chem. 274, 6797–6803 (1999).

    Article  CAS  Google Scholar 

  33. Busch, C. et al. A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J. Biol. Chem. 273, 19566–19572 (1998).

    Article  CAS  Google Scholar 

  34. Shibayama, K., Ohsuka, S., Tanaka, T., Arakawa, Y. & Ohta, M. Conserved structural regions involved in the catalytic mechanism of Escherichia coli K-12 WaaO (RfaI). J. Bacteriol. 180, 5313–5318 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Uitdehaag, J.C.M. et al. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat. Struct. Biol. 6, 432–436 (1999).

    Article  CAS  Google Scholar 

  36. Gebler, J.C. et al. Substrate-induced inactivation of a crippled β-glucosidase mutant: identification of the labeled amino acid and mutagenic analysis of its role. Biochemistry 34, 14547–14553 (1995).

    Article  CAS  Google Scholar 

  37. Pedersen, L.C. et al. Heparan/chondroitin sulfate biosynthesis. Structure and mechanism of human glucuronyltransferase I. J. Biol. Chem. 275, 34580–34585 (2000).

    Article  CAS  Google Scholar 

  38. Horenstein, B.A. Quantum mechanical analysis of an α-carboxylate-substituted oxocarbenium ion. Isotope effects for formation of the sialyl cation and the origin of an unusually large 14C secondary isotope effect. J. Am. Chem. Soc. 119, 1101–1107 (1997).

    Article  CAS  Google Scholar 

  39. Horenstein, B.A. & Bruner, M. The N-acetyl neuraminyl oxocarbenium ion is an intermediate in the presence of anionic nucleophiles. J. Am. Chem. Soc. 120, 1357–1362 (1998).

    Article  CAS  Google Scholar 

  40. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  41. Watts, A.G. & Withers, S.G. The synthesis of some mechanistic probes for sialic acid processing enzymes and the labeling of a sialidase from Trypanosoma rangeli. Can. J. Chem. (in the press).

  42. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  43. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. A 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  44. Terwilliger, T.C. Maximun likelihood density modification. Acta Crystallogr. D. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  45. Cowtan, K. DM: An automated procedure for phase improvement by density modification. Joint CCP4 and ESF-EACBM Newslett. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  46. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  47. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50, 157–163 (1994).

    Article  Google Scholar 

  48. Kleywegt, G.J. & Jones, T.A. Model building and refinement practice. Methods Enzymol. 277, 208–230 (1997).

    Article  CAS  Google Scholar 

  49. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  50. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  52. Merritt, E.A. & Bacon, D.J. Raster3D: Photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  Google Scholar 

  53. Gosselin, S., Alhussaini, M., Streiff, M.B., Takabayashi, K. & Palcic, M.M. A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92–97 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US Department of Energy for access to data collection facilities at the NSLS, and also M. Karwaski and S. Ryan for technical help. We thank Neose Pharmaceuticals for providing sialyllactose and CMP-NeuAc for the kinetic studies. The work was funded by the Howard Hughes Medical Institute, the Canadian Institute of Health Research and the Burroughs Wellcome Foundation (to N.S.), the Natural Sciences and Engineering Research Council and a Human Frontiers Science Grant (to S.W.) and by the National Research Council–GH (to W.W. and M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie C J Strynadka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiu, C., Watts, A., Lairson, L. et al. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Nat Struct Mol Biol 11, 163–170 (2004). https://doi.org/10.1038/nsmb720

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb720

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing