Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structural basis of cephalosporin formation in a mononuclear ferrous enzyme

Abstract

Deacetoxycephalosporin-C synthase (DAOCS) is a mononuclear ferrous enzyme that transforms penicillins into cephalosporins by inserting a carbon atom into the penicillin nucleus. In the first half-reaction, dioxygen and 2-oxoglutarate produce a reactive iron-oxygen species, succinate and CO2. The oxidizing iron species subsequently reacts with penicillin to give cephalosporin and water. Here we describe high-resolution structures for ferrous DAOCS in complex with penicillins, the cephalosporin product, the cosubstrate and the coproduct. Steady-state kinetic data, quantum-chemical calculations and the new structures indicate a reaction sequence in which a 'booby-trapped' oxidizing species is formed. This species is stabilized by the negative charge of succinate on the iron. The binding sites of succinate and penicillin overlap, and when penicillin replaces succinate, it removes the stabilizing charge, eliciting oxidative attack on itself. Requisite groups of penicillin are within 1 Å of the expected position of a ferryl oxygen in the enzyme–penicillin complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The active site region of DAOCS in complex with substrates and products.
Figure 2: Penicillin binds in the same orientation to DAOCS as it does to isopenicillin N synthase (IPNS).
Figure 3: Quantum chemical models for the oxidizing species.
Figure 4: Substrate inhibition of DAOCS with increasing concentrations of penicillin G or 2-oxoglutarate.
Figure 5: A possible mechanism for the ring expansion catalyzed by DAOCS.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Prescott, A.G. A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J. Exp. Bot. 44, 849–861 (1993).

    Article  CAS  Google Scholar 

  2. Valegård, K. et al. Structure of a cephalosporin synthase. Nature 394, 805–809 (1998).

    Article  Google Scholar 

  3. Baldwin, J.E. & Abraham, E. The biosynthesis of penicillins and cephalosporins. Nat. Prod. Rep. 5, 129–145 (1988).

    Article  CAS  Google Scholar 

  4. Zhang, Z. et al. Structural origins of the selectivity of the trifunctional oxygenase clavaminic acid synthase. Nat. Struct. Biol. 7, 127–133 (2000).

    Article  CAS  Google Scholar 

  5. Wilmouth, R. et al. Structure and mechanism of anthocyanidin synthase from Arabidopsis thaliana. Structure 10, 93–103 (2002).

    Article  CAS  Google Scholar 

  6. Elkins, J.M. et al. X-ray crystal structure of Escherichia coli taurine/α-ketoglutarate dioxygenase complexed to ferrous iron and substrates. Biochemistry 41, 5185–5192 (2002).

    Article  CAS  Google Scholar 

  7. Clifton, I.J., Hsueh, L.C., Baldwin, J.E., Harlos, K. & Schofield, C.J. Structure of proline 3-hydrolase. Evolution of the family of 2-oxoglutarate dependent oxygenases. Eur. J. Biochem. 268, 6625–6636 (2001).

    Article  CAS  Google Scholar 

  8. Dann, C.E.. III, Bruick, R.K. & Deisenhofer, J. Structure of a factor-inhibiting hypoxia-inducible factor 1: an asparaginyl hydroxylase involved in the hypoxic response pathway. Proc. Natl. Acad. Sci. USA 99, 15351–15356 (2002).

    Article  CAS  Google Scholar 

  9. Elkins et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J. Biol. Chem. 278, 1802–1806 (2003).

    Article  CAS  Google Scholar 

  10. Lee, C., Kim, S.J., Jeong, D.G., Lee, S.M. & Ryu, S.E. Structure of human FIH-1 reveals a unique active site pocket and interaction sites for HIF-1 and von Hippel-Lindau. J. Biol. Chem. 278, 7558–7563.

  11. Roach, P.L. et al. Crystal structure of isopenicillin N synthase, first of a new structural family of enzymes. Nature 375, 700–704 (1995).

    Article  CAS  Google Scholar 

  12. Hegg, E.L. & Que, L. Jr. The 2-His-carboxylate facial triad. An emerging structural motif in mononuclear non-heme iron(II) enzymes. Eur. J. Biochem. 250, 625–629 (1997).

    Article  CAS  Google Scholar 

  13. Barlow, J.N., Zhang, Z.H., John, P., Baldwin, J.E. & Schofield, C.J. Inactivation of 1-aminocyclopropane-1-carboxylate oxidase involves oxidative modifications. Biochemistry 36, 3563–3569 (1997).

    Article  CAS  Google Scholar 

  14. Liu, A., Ho, R.Y.N. & Que, L. Jr. Alternative reactivity of an α-ketoglutarate-dependent iron(II) oxygenase: enzyme self-hydroxylation. J. Am. Chem. Soc. 123, 5126–5127 (2001).

    Article  CAS  Google Scholar 

  15. Ryle, M.J. et al. O2- and α-ketoglutarate-dependent tyrosyl radical formation in TauD, an α-keto acid-dependent non-heme iron dioxygenase. Biochemistry 42, 1854–1862 (2003).

    Article  CAS  Google Scholar 

  16. Baldwin, J.E. & Schofield, C.J. in The Chemistry of β-Lactams (ed. Page, M.I.) 1–78 (Blackie, London, 1992).

    Book  Google Scholar 

  17. Baldwin, J.E. et al. Substrate specificity of cloned deacetoxycephalosporin C/deacetylcephalosporin C synthetase. J. Antibiot. 41, 1694–1695 (1988).

    Article  CAS  Google Scholar 

  18. Dubus, A. et al. Probing the penicillin sidechain selectivity of recombinant deacetoxycephalosporin C synthase. Cell. Mol. Life Sci. 58, 835–843 (2001).

    Article  CAS  Google Scholar 

  19. Zhang, Z. et al. Crystal structure of a clavaminate synthase-Fe(II)-2-oxoglutarate-substrate-NO complex: evidence for metal centred rearrangements. FEBS Lett. 517, 7–12 (2002).

    Article  CAS  Google Scholar 

  20. Burzlaff, N.I. et al. The reaction cycle of isopenicillin N synthase observed by X-ray diffraction. Nature 401, 721–724 (1999).

    Article  CAS  Google Scholar 

  21. O'Brien, J.R., Schuller, D.J., Yang, V.S., Dillard, B.D. & Lanzilotta, W.N. Substrate-induced conformational changes in Escherichia coli taurine/α-ketoglutarate dioxygenase and insight into the oligomeric structure. Biochemistry 42, 5547–5554 (2003).

    Article  CAS  Google Scholar 

  22. Solomon, E.I. et al. Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem. Rev. 100, 235–349 (2000).

    Article  CAS  Google Scholar 

  23. Zhou, J. et al. Spectroscopic studies of substrate interactions with clavaminate synthase 2, a multifunctional α-KG-dependent non-heme iron enzyme: correlation with mechanisms and reactivities. J. Am. Chem. Soc. 123, 7388–7398 (2001).

    Article  CAS  Google Scholar 

  24. Price, J.C., Barr, E.W., Tirupati, B., Bollinger, J.M. Jr. & Krebs, C. The first direct characterization of a high-valent iron intermediate in the reaction of an α-ketoglutarate-dependent dioxygenase: a high-spin Fe(IV) complex in taurine/α-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 42, 7497–7508 (2003).

    Article  CAS  Google Scholar 

  25. Lee, H.J., Schofield, C.J. & Lloyd, M.D. Active site mutations of recombinant deacetoxycephalosporin C synthase. Biochem. Biophys. Res. Commun. 292, 66–70 (2002).

    Article  CAS  Google Scholar 

  26. Lee, H.-J. et al. Kinetic and crystallographic studies on deacetoxycephalosporin C synthase (DAOCS). J. Mol. Biol. 308, 937–948 (2001).

    Article  CAS  Google Scholar 

  27. Prescott, A.G. & Lloyd, M.D. The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat. Prod. Rep. 17, 367–383 (2000).

    Article  CAS  Google Scholar 

  28. Pang, C.P. et al. Stereochemistry of the incorporation of valine methyl groups into methylene groups in cephalosporin C. Biochem. J. 222, 777–788 (1984).

    Article  CAS  Google Scholar 

  29. Townsend, C.A., Theis, A.B., Neese, A.S., Barrabee, E.B. & Poland, D. Stereochemical fate of chiral/methyl valine in the ring expansion of penicillin N to deacetoxycephalosporin C. J. Am. Chem. Soc. 107, 4760–4767 (1985).

    Article  CAS  Google Scholar 

  30. Baldwin, J.E., Adlington, R.M., Kang, T.W., Lee, E. & Schofield, C.J. The ring expansion of penams to cephams: a possible biomimetic process. Tetrahedron 44, 5953–5957 (1988).

    Article  CAS  Google Scholar 

  31. Iwata-Reuyl, D., Basak, A. & Townsend, C.A. β-Secondary kinetic isotope effects in the clavaminate synthase-catalysed oxidative cyclization of proclavaminic acid and in related azetidinone model reactions. J. Am. Chem. Soc. 121, 11356–11368 (1999).

    Article  CAS  Google Scholar 

  32. Wu, M., Moon, H.-S. & Begley, T.P. Mechanism-based inactivation of the human prolyl-4-hydroxylase by 5-oxaproline-containing peptides: evidence for a prolyl radical intermediate. J. Am. Chem. Soc. 121, 587–588 (1999).

    Article  CAS  Google Scholar 

  33. Morin, R.B. et al. Chemistry of cephalosporin antibiotics. III. Chemical correlation of penicillin and cephalosporin antibiotics. J. Am. Chem. Soc. 85, 1896–1897 (1963).

    Article  CAS  Google Scholar 

  34. Chin, H.S. & Sim, T.S. C-terminus modification of Streptomyces clavuligerus deacetoxycephalosporin C synthase improves catalysis with an expanded substrate specificity. Biochem. Biophys. Res. Commun. 295, 55–61 (2002).

    Article  CAS  Google Scholar 

  35. Szoke, A., Scott, W.G. & Hajdu, J. Catalysis, evolution and life. FEBS Lett. 553, 18–20 (2003).

    Article  CAS  Google Scholar 

  36. Retey, J. Enzymatic-reaction selectivity by negative catalysis or how do enzymes deal with highly reactive intermediates. Angew. Chem. Int. Ed. 29, 355–361 (1990).

    Article  Google Scholar 

  37. Lloyd, M.D. et al. Studies on the active site of deacetoxycephalosporin C synthase. J. Mol. Biol. 287, 943–960 (1999).

    Article  CAS  Google Scholar 

  38. Terwisscha van Scheltinga, A.C., Valegård, K., Subramanian, R., Hajdu, J. & Andersson, I. Multiple isomorphous replacement on merohedral twins: structure determination of deacetoxycephalosporin C synthase. Acta Crystallogr. D 57, 1776–1785 (2001).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  40. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Bergdoll, M. & Kjeldgaard, M. in Crystallographic and Modelling Methods (in Molecular Design) (eds. Bugg, C. & Ealick, S.) 189–190 (Springer, New York, 1990).

    Book  Google Scholar 

  42. Harris, M. & Jones, T.A. Molray—a web interface between O and the Pov-Ray ray tracer. Acta Crystallogr. D 57, 1201–1203 (2001).

    Article  CAS  Google Scholar 

  43. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  44. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  45. Merrit, E.A. & Bacon D.J. Raster 3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Schofield and Oxford Centre for Molecular Sciences for discussions and for a supply of DAOC. We thank T. Gunda and L. Eriksson for help. Maxlab, the European Synchrotron Research Facility and the European Molecular Biology Laboratory are acknowledged for beam time and assistance. This work was supported by the European Union Biotechnology Programme and by the Swedish Research Councils.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Valegård.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valegård, K., van Scheltinga, A., Dubus, A. et al. The structural basis of cephalosporin formation in a mononuclear ferrous enzyme. Nat Struct Mol Biol 11, 95–101 (2004). https://doi.org/10.1038/nsmb712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing