Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS

Abstract

We describe a mechanism connecting the adaptive behavior of the bacterial mechanosensitive channel MscS to the flexibility of the pore-lining helix TM3. Simulated expansion of the channel structure revealed straightening of a characteristic kink near Gly113 in the open state; return to the closed state produced an alternative kink at Gly121. Patch-clamp experiments showed that higher helical propensity introduced by a G113A mutation prevented inactivation. A similar mutation, G121A, kinetically impeded both closure and inactivation. Duplicating the glycines at each of these sites to increase flexibility produced directly opposite effects. The severely toxic G113A G121A mutation resulted in channels that could not inactivate or close with the release of tension. These data suggest that the open MscS features straight TM3 helices, which act as collapsible 'struts'. Closure and desensitization rely on buckling at Gly121, whereas the crystal-like kink at Gly113 is a feature of the inactivated state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the MscS crystal structure and modeling of its different functional states.
Figure 2: Characterization of the adaptive behaviors of WT MscS and two mutants with altered TM3b flexibility near Gly113.
Figure 3: Mutations in TM3b at Gly121 greatly affect channel responses to pressure.
Figure 4: Adaptive current decline is a result of two processes, desensitization and inactivation.
Figure 5: Tension dependence of inactivation for WT MscS and mutants.
Figure 6: High helical propensity in TM3b impairs closure of MscS.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Levina, N. et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 18, 1730–1737 (1999).

    Article  CAS  Google Scholar 

  2. Pivetti, C.D. et al. Two families of mechanosensitive channel proteins. Microbiol. Mol. Biol. Rev. 67, 66–85 (2003).

    Article  CAS  Google Scholar 

  3. Nakayama, Y., Fujiu, K., Sokabe, M. & Yoshimura, K. Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc. Natl. Acad. Sci. USA 104, 5883–5888 (2007).

    Article  CAS  Google Scholar 

  4. Haswell, E.S. & Meyerowitz, E.M. MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr. Biol. 16, 1–11 (2006).

    Article  CAS  Google Scholar 

  5. Sukharev, S.I., Martinac, B., Arshavsky, V.Y. & Kung, C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys. J. 65, 177–183 (1993).

    Article  CAS  Google Scholar 

  6. Sukharev, S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys. J. 83, 290–298 (2002).

    Article  CAS  Google Scholar 

  7. Okada, K., Moe, P.C. & Blount, P. Functional design of bacterial mechanosensitive channels. Comparisons and contrasts illuminated by random mutagenesis. J. Biol. Chem. 277, 27682–27688 (2002).

    Article  CAS  Google Scholar 

  8. Miller, S. et al. Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J. 22, 36–46 (2003).

    Article  CAS  Google Scholar 

  9. Akitake, B., Anishkin, A. & Sukharev, S. The “dashpot” mechanism of stretch-dependent gating in MscS. J. Gen. Physiol. 125, 143–154 (2005).

    Article  CAS  Google Scholar 

  10. Koprowski, P. & Kubalski, A. Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J. Membr. Biol. 164, 253–262 (1998).

    Article  CAS  Google Scholar 

  11. Edwards, M.D., Booth, I.R. & Miller, S. Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr. Opin. Microbiol. 7, 163–167 (2004).

    Article  CAS  Google Scholar 

  12. Edwards, M.D. et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat. Struct. Mol. Biol. 12, 113–119 (2005).

    Article  CAS  Google Scholar 

  13. Bass, R.B., Strop, P., Barclay, M. & Rees, D.C. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298, 1582–1587 (2002).

    Article  CAS  Google Scholar 

  14. Anishkin, A. & Sukharev, S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys. J. 86, 2883–2895 (2004).

    Article  CAS  Google Scholar 

  15. Sotomayor, M. & Schulten, K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys. J. 87, 3050–3065 (2004).

    Article  CAS  Google Scholar 

  16. Sotomayor, M., van der Straaten, T.A., Ravaioli, U. & Schulten, K. Electrostatic properties of the mechanosensitive channel of small conductance MscS. Biophys. J. 90, 3496–3510 (2006).

    Article  CAS  Google Scholar 

  17. Spronk, S.A., Elmore, D.E. & Dougherty, D.A. Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophys. J. 90, 3555–3569 (2006).

    Article  CAS  Google Scholar 

  18. Sotomayor, M., Vasquez, V., Perozo, E. & Schulten, K. Ion conduction through MscS as determined by electrophysiology and simulation. Biophys. J. 92, 886–902 (2006).

    Article  Google Scholar 

  19. Schumann, U., Edwards, M.D., Li, C. & Booth, I.R. The conserved carboxy-terminus of the MscS mechanosensitive channel is not essential but increases stability and activity. FEBS Lett. 572, 233–237 (2004).

    Article  CAS  Google Scholar 

  20. Koprowski, P. & Kubalski, A. C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J. Biol. Chem. 278, 11237–11245 (2003).

    Article  CAS  Google Scholar 

  21. Miller, S., Edwards, M.D., Ozdemir, C. & Booth, I.R. The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J. Biol. Chem. 278, 32246–32250 (2003).

    Article  CAS  Google Scholar 

  22. Anishkin, A., Akitake, B. & Sukharev, S. Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys. J., published online 2 November 2007 (doi:10.1529/biophysj.107.110171).

    Article  CAS  Google Scholar 

  23. Simons, K.T., Bonneau, R., Ruczinski, I. & Baker, D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl. 3, 171–176 (1999).

  24. Simons, K.T., Strauss, C. & Baker, D. Prospects for ab initio protein structural genomics. J. Mol. Biol. 306, 1191–1199 (2001).

    Article  CAS  Google Scholar 

  25. Simons, K.T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209–225 (1997).

    Article  CAS  Google Scholar 

  26. Lomize, A.L., Pogozheva, I.D., Lomize, M.A. & Mosberg, H.I. Positioning of proteins in membranes: a computational approach. Protein Sci. 15, 1318–1333 (2006).

    Article  CAS  Google Scholar 

  27. Jiang, Y. et al. Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417, 515–522 (2002).

    Article  CAS  Google Scholar 

  28. Long, S.B., Campbell, E.B. & Mackinnon, R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309, 897–903 (2005).

    Article  CAS  Google Scholar 

  29. Shealy, R.T., Murphy, A.D., Ramarathnam, R., Jakobsson, E. & Subramaniam, S. Sequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure. Biophys. J. 84, 2929–2942 (2003).

    Article  CAS  Google Scholar 

  30. Kellenberger, S., West, J.W., Catterall, W.A. & Scheuer, T. Molecular analysis of potential hinge residues in the inactivation gate of brain type IIA Na+ channels. J. Gen. Physiol. 109, 607–617 (1997).

    Article  CAS  Google Scholar 

  31. Ding, S., Ingleby, L., Ahern, C.A. & Horn, R. Investigating the putative glycine hinge in Shaker potassium channel. J. Gen. Physiol. 126, 213–226 (2005).

    Article  CAS  Google Scholar 

  32. Magidovich, E. & Yifrach, O. Conserved gating hinge in ligand- and voltage-dependent K+ channels. Biochemistry 43, 13242–13247 (2004).

    Article  CAS  Google Scholar 

  33. Liu, L.P. & Deber, C.M. Uncoupling hydrophobicity and helicity in transmembrane segments. Alpha-helical propensities of the amino acids in non-polar environments. J. Biol. Chem. 273, 23645–23648 (1998).

    Article  CAS  Google Scholar 

  34. Serrano, L., Neira, J.L., Sancho, J. & Fersht, A.R. Effect of alanine versus glycine in alpha-helices on protein stability. Nature 356, 453–455 (1992).

    Article  CAS  Google Scholar 

  35. Li, Y., Moe, P.C., Chandrasekaran, S., Booth, I.R. & Blount, P. Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J. 21, 5323–5330 (2002).

    Article  CAS  Google Scholar 

  36. Ou, X., Blount, P., Hoffman, R.J. & Kung, C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc. Natl. Acad. Sci. USA 95, 11471–11475 (1998).

    Article  CAS  Google Scholar 

  37. Liu, L.P. & Deber, C.M. Guidelines for membrane protein engineering derived from de novo designed model peptides. Biopolymers 47, 41–62 (1998).

    Article  CAS  Google Scholar 

  38. Beckstein, O. & Sansom, M.S. Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. USA 100, 7063–7068 (2003).

    Article  CAS  Google Scholar 

  39. Zhao, Y., Yarov-Yarovoy, V., Scheuer, T. & Catterall, W.A. A gating hinge in Na+ channels; a molecular switch for electrical signaling. Neuron 41, 859–865 (2004).

    Article  CAS  Google Scholar 

  40. Phillips, J.C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    Article  CAS  Google Scholar 

  41. MacKerell, A.D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586–3616 (1998).

    Article  CAS  Google Scholar 

  42. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8–27–8 (1996).

    Article  CAS  Google Scholar 

  43. Jorgensen, W.L., Chandrasekhar, J. & Madura, J.D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  44. Cui, C., Smith, D.O. & Adler, J. Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membrane by whole-cell patch clamp recording. J. Membr. Biol. 144, 31–42 (1995).

    Article  CAS  Google Scholar 

  45. Martinac, B., Buechner, M., Delcour, A.H., Adler, J. & Kung, C. Pressure-sensitive ion channel in Escherichia coli. Proc. Natl. Acad. Sci. USA 84, 2297–2301 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Shirinian for generating some of the MscS mutants, M. Kiyatkin for compiling a library of MscS and MscK homologs and conducting the multiple sequence alignments, and I.R. Booth (University of Aberdeen) and P. Blount (University of Texas, Dallas) for kindly providing the MJF465 and PB113 strains. This work was supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

B.A., A.A. and S.S. designed the experiments and analyzed the models and data. B.A. conducted all of the patch-clamp experiments and generated some of the MscS mutants. A.A. performed all of the computations (extrapolated-motion analysis and molecular dynamics simulations). N.L. performed the growth-curve analysis and generated some of the MscS mutants. The paper was written and edited by B.A., A.A. and S.S.

Corresponding author

Correspondence to Sergei Sukharev.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Methods (PDF 663 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akitake, B., Anishkin, A., Liu, N. et al. Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat Struct Mol Biol 14, 1141–1149 (2007). https://doi.org/10.1038/nsmb1341

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1341

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing