Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A YY1–INO80 complex regulates genomic stability through homologous recombination–based repair

Abstract

DNA damage repair is crucial for the maintenance of genome integrity and cancer suppression. We found that loss of the mouse transcription factor YY1 resulted in polyploidy and chromatid aberrations, which are signatures of defects in homologous recombination. Further biochemical analyses identified a YY1 complex comprising components of the evolutionarily conserved INO80 chromatin-remodeling complex. Notably, RNA interference–mediated knockdown of YY1 and INO80 increased cellular sensitivity toward DNA-damaging agents. Functional assays revealed that both YY1 and INO80 are essential in homologous recombination–based DNA repair (HRR), which was further supported by the finding that YY1 preferentially bound a recombination-intermediate structure in vitro. Collectively, these observations reveal a link between YY1 and INO80 and roles for both in HRR, providing new insight into mechanisms that control the cellular response to genotoxic stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of YY1 results in polyploidy and chromosome structural aberrations.
Figure 2: YY1 associates with mammalian Ino80 complex.
Figure 3: YY1 interacts with INO80 subunits in vitro and in vivo.
Figure 4: Knockdown of TIP49B and INO80 leads to UV hypersensitivity.
Figure 5: Impaired homology-directed repair of a chromosomal DSB in YY1- and INO80-deficient 293T and HT-1080 cell lines.
Figure 6: YY1 binds a recombination-intermediate structure in vitro. (a) Purified YY1 complex was incubated with biotinylated Holliday-junction DNA (probe), and the binding reactions were resolved on 4% nondenaturing PAGE gels.

Similar content being viewed by others

References

  1. Khanna, K.K. & Jackson, S.P. DNA double-strand breaks: signaling, repair and the cancer connection. Nat. Genet. 27, 247–254 (2001).

    Article  CAS  Google Scholar 

  2. van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206 (2001).

    Article  CAS  Google Scholar 

  3. Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol. 7, 739–750 (2006).

    Article  CAS  Google Scholar 

  4. Jasin, M. Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene 21, 8981–8993 (2002).

    Article  CAS  Google Scholar 

  5. Moynahan, M.E. The cancer connection: BRCA1 and BRCA2 tumor suppression in mice and humans. Oncogene 21, 8994–9007 (2002).

    Article  CAS  Google Scholar 

  6. Fritsch, O., Benvenuto, G., Bowler, C., Molinier, J. & Hohn, B. The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol. Cell 16, 479–485 (2004).

    Article  CAS  Google Scholar 

  7. Tsukuda, T., Fleming, A.B., Nickoloff, J.A. & Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383 (2005).

    Article  CAS  Google Scholar 

  8. Morrison, A.J. et al. INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775 (2004).

    Article  CAS  Google Scholar 

  9. Jin, J. et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. J. Biol. Chem. 280, 41207–41212 (2005).

    Article  CAS  Google Scholar 

  10. Shen, X., Mizuguchi, G., Hamiche, A. & Wu, C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 406, 541–544 (2000).

    Article  CAS  Google Scholar 

  11. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S.M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  Google Scholar 

  12. van Attikum, H. & Gasser, S.M. The histone code at DNA breaks: a guide to repair? Nat. Rev. Mol. Cell Biol. 6, 757–765 (2005).

    Article  CAS  Google Scholar 

  13. Donohoe, M.E. et al. Targeted disruption of mouse Yin Yang 1 transcription factor results in peri-implantation lethality. Mol. Cell. Biol. 19, 7237–7244 (1999).

    Article  CAS  Google Scholar 

  14. Brown, J.L., Fritsch, C., Mueller, J. & Kassis, J.A. The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130, 285–294 (2003).

    Article  CAS  Google Scholar 

  15. Atchison, L., Ghias, A., Wilkinson, F., Bonini, N. & Atchison, M.L. Transcription factor YY1 functions as a PcG protein in vivo. EMBO J. 22, 1347–1358 (2003).

    Article  CAS  Google Scholar 

  16. Brown, J.L., Mucci, D., Whiteley, M., Dirksen, M.L. & Kassis, J.A. The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol. Cell 1, 1057–1064 (1998).

    Article  CAS  Google Scholar 

  17. Sui, G. et al. Yin Yang 1 is a negative regulator of p53. Cell 117, 859–872 (2004).

    Article  CAS  Google Scholar 

  18. Gronroos, E., Terentiev, A.A., Punga, T. & Ericsson, J. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proc. Natl. Acad. Sci. USA 101, 12165–12170 (2004).

    Article  Google Scholar 

  19. Affar el, B. et al. Essential dosage-dependent functions of the transcription factor yin yang 1 in late embryonic development and cell cycle progression. Mol. Cell. Biol. 26, 3565–3581 (2006).

    Article  Google Scholar 

  20. D'Andrea, A.D. & Grompe, M. The Fanconi anaemia/BRCA pathway. Nat. Rev. Cancer 3, 23–34 (2003).

    Article  CAS  Google Scholar 

  21. German, J. Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72, 393–406 (1993).

    Article  CAS  Google Scholar 

  22. Auerbach, A.D. & Wolman, S.R. Susceptibility of Fanconi's anaemia fibroblasts to chromosome damage by carcinogens. Nature 261, 494–496 (1976).

    Article  CAS  Google Scholar 

  23. Scully, R. & Livingston, D.M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  CAS  Google Scholar 

  24. Patel, K.J. et al. Involvement of Brca2 in DNA repair. Mol. Cell 1, 347–357 (1998).

    Article  CAS  Google Scholar 

  25. Elledge, S.J. Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672 (1996).

    Article  CAS  Google Scholar 

  26. Manke, I.A. et al. MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17, 37–48 (2005).

    Article  CAS  Google Scholar 

  27. Groisman, R. et al. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113, 357–367 (2003).

    Article  CAS  Google Scholar 

  28. Shi, Y. et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature 422, 735–738 (2003).

    Article  CAS  Google Scholar 

  29. Cai, Y. et al. YY1 functions with INO80 to activate transcription. Nat. Struct. Mol. Biol. 14, 872–874 (2007).

    Article  CAS  Google Scholar 

  30. Taccioli, G.E. et al. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science 265, 1442–1445 (1994).

    Article  CAS  Google Scholar 

  31. Allen, C., Kurimasa, A., Brenneman, M.A., Chen, D.J. & Nickoloff, J.A. DNA-dependent protein kinase suppresses double-strand break-induced and spontaneous homologous recombination. Proc. Natl. Acad. Sci. USA 99, 3758–3763 (2002).

    Article  CAS  Google Scholar 

  32. Blunt, T. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 80, 813–823 (1995).

    Article  CAS  Google Scholar 

  33. Schildkraut, E., Miller, C.A. & Nickoloff, J.A. Gene conversion and deletion frequencies during double-strand break repair in human cells are controlled by the distance between direct repeats. Nucleic Acids Res. 33, 1574–1580 (2005).

    Article  CAS  Google Scholar 

  34. Gaffney, E.V. et al. Established lines of SV40-transformed human amnion cells. Cancer Res. 30, 1668–1676 (1970).

    CAS  PubMed  Google Scholar 

  35. Labrecque, S. & Matlashewski, G.J. Viability of wild type p53-containing and p53-deficient tumor cells following anticancer treatment: the use of human papillomavirus E6 to target p53. Oncogene 11, 387–392 (1995).

    CAS  PubMed  Google Scholar 

  36. Allen, C., Halbrook, J. & Nickoloff, J.A. Interactive competition between homologous recombination and non-homologous end joining. Mol. Cancer Res. 1, 913–920 (2003).

    CAS  PubMed  Google Scholar 

  37. Tsaneva, I.R., Muller, B. & West, S.C. ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins of E. coli. Cell 69, 1171–1180 (1992).

    Article  CAS  Google Scholar 

  38. Parsons, C.A., Tsaneva, I., Lloyd, R.G. & West, S.C. Interaction of Escherichia coli RuvA and RuvB proteins with synthetic Holliday junctions. Proc. Natl. Acad. Sci. USA 89, 5452–5456 (1992).

    Article  CAS  Google Scholar 

  39. Iwasaki, H., Takahagi, M., Nakata, A. & Shinagawa, H. Escherichia coli RuvA and RuvB proteins specifically interact with Holliday junctions and promote branch migration. Genes Dev. 6, 2214–2220 (1992).

    Article  CAS  Google Scholar 

  40. Klymenko, T. et al. A Polycomb group protein complex with sequence-specific DNA-binding and selective methyl-lysine-binding activities. Genes Dev. 20, 1110–1122 (2006).

    Article  CAS  Google Scholar 

  41. Bugreev, D.V., Mazina, O.M. & Mazin, A.V. Rad54 protein promotes branch migration of Holliday junctions. Nature 442, 590–593 (2006).

    Article  CAS  Google Scholar 

  42. Ingleston, S.M. et al. Holliday junction binding and processing by the RuvA protein of Mycoplasma pneumoniae. Eur. J. Biochem. 269, 1525–1533 (2002).

    Article  CAS  Google Scholar 

  43. Lisby, M. & Rothstein, R. DNA damage checkpoint and repair centers. Curr. Opin. Cell Biol. 16, 328–334 (2004).

    Article  CAS  Google Scholar 

  44. Lisby, M., Rothstein, R. & Mortensen, U.H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl. Acad. Sci. USA 98, 8276–8282 (2001).

    Article  CAS  Google Scholar 

  45. Gao, H., Chen, X.B. & McGowan, C.H. Mus81 endonuclease localizes to nucleoli and to regions of DNA damage in human S-phase cells. Mol. Biol. Cell 14, 4826–4834 (2003).

    Article  CAS  Google Scholar 

  46. Sui, G. & Shi, Y. Gene silencing by a DNA vector-based RNAi technology. Methods Mol. Biol. 309, 205–218 (2005).

    CAS  PubMed  Google Scholar 

  47. Savage, J.R. Classification and relationships of induced chromosomal structual changes. J. Med. Genet. 13, 103–122 (1976).

    Article  CAS  Google Scholar 

  48. Ikura, T. et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102, 463–473 (2000).

    Article  CAS  Google Scholar 

  49. Karow, J.K., Constantinou, A., Li, J.L., West, S.C. & Hickson, I.D. The Bloom's syndrome gene product promotes branch migration of holliday junctions. Proc. Natl. Acad. Sci. USA 97, 6504–6508 (2000).

    Article  CAS  Google Scholar 

  50. Kaplan, D.L. & O'Donnell, M. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. J. Mol. Biol. 355, 473–490 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Shi laboratory for suggestions and helpful discussions; R. Scully and A. Xie (Harvard Institute of Medicine) for reagents and discussion; M.D. Cole (Dartmouth University), Y. Nakatani (Dana Farber Cancer Institute), W. Harper (Harvard Medical School) and J. Lieberman (Harvard Medical School) for antibodies and constructs; and G. Sui (Wake Forest University) and Y. Li (Dana Farber Cancer Institute) for technical assistance. pET-Flag-TIP49A and pET-Flag-TIP49B were from T.-a. Tamura (Chiba University); pCMV-Flag-BAF53 and anti-BAF53 were from M.D. Cole; anti-TIP49B was from Y. Nakatani; anti-TIP49Awas from A. Dutta (Dana Farber Cancer Institute); anti-INO80 was from C. Wu (US National Cancer Institute). This project was supported by a grant from the US National Institutes of Health (GM53874) to Yang Shi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shi.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Methods (PDF 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Shi, Y., Mulligan, P. et al. A YY1–INO80 complex regulates genomic stability through homologous recombination–based repair. Nat Struct Mol Biol 14, 1165–1172 (2007). https://doi.org/10.1038/nsmb1332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1332

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing