Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Structural basis for the coevolution of a viral RNA–protein complex

Abstract

The cocrystal structure of the PP7 bacteriophage coat protein in complex with its translational operator identifies a distinct mode of sequence-specific RNA recognition when compared to the well-characterized MS2 coat protein–RNA complex. The structure reveals the molecular basis of the PP7 coat protein's ability to selectively bind its cognate RNA, and it demonstrates that the conserved β-sheet surface is a flexible architecture that can evolve to recognize diverse RNA hairpins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coat-protein sequence alignment and overview of the MS2 coat protein and PP7ΔFG complexes with RNA.
Figure 2: RNA-protein interface.
Figure 3: Orientation of adenine recognition pockets.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Kozak, M. & Nathans, D. Bacteriol. Rev. 36, 109–134 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Olsthoorn, R.C., Garde, G., Dayhuff, T., Atkins, J.F. & Van Duin, J. Virology 206, 611–625 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Carey, J., Cameron, V., de Haseth, P.L. & Uhlenbeck, O.C. Biochemistry 22, 2601–2610 (1983).

    Article  CAS  PubMed  Google Scholar 

  4. Lim, F., Downey, T.P. & Peabody, D.S. J. Biol. Chem. 276, 22507–22513 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Spingola, M. & Peabody, D.S. Nucleic Acids Res. 25, 2808–2815 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim, F., Spingola, M. & Peabody, D.S. J. Biol. Chem. 271, 31839–31845 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Horn, W.T. et al. Structure 14, 487–495 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Valegard, K., Liljas, L., Fridborg, K. & Unge, T. Nature 345, 36–41 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. Ni, C.Z. et al. Structure 3, 255–263 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Golmohammadi, R., Fridborg, K., Bundule, M., Valegard, K. & Liljas, L. Structure 4, 543–554 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Tars, K., Bundule, M., Fridborg, K. & Liljas, L. J. Mol. Biol. 271, 759–773 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Lim, F. & Peabody, D.S. Nucleic Acids Res. 30, 4138–4144 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valegard, K. et al. J. Mol. Biol. 270, 724–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, H.N. & Uhlenbeck, O.C. Biochemistry 26, 8221–8227 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Valegard, K., Murray, J.B., Stockley, P.G., Stonehouse, N.J. & Liljas, L. Nature 371, 623–626 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Bardwell, V.J. & Wickens, M. Nucleic Acids Res. 18, 6587–6594 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hogg, J.R. & Collins, K. RNA 13, 868–880 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Cell 103, 1121–1131 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Bertrand, E. et al. Mol. Cell 2, 437–445 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants AR-41480 and EB-002060 to R.H.S and National Research Service Award institutional training grant (5T32HL007675-19) support to J.A.C.) and the Albert Einstein Cancer Center. The authors wish to thank the staff at the National Synchrotron Light Source X29a beamline for assistance with data collection, the staff at the Argonne Advanced Photon Source Structural GenomiX Collaborative Access Team beamline for express crystallography data collection and G. Arenas, M. Hennig, U. Meier, S. Nguyen and S. Ryder for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.A.C. designed and performed the experiments. Y.P. assisted with crystallography. J.A.C., Y.P., S.C.A. and R.H.S. wrote and discussed the manuscript.

Corresponding author

Correspondence to Robert H Singer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Table 1 and Supplementary Methods (PDF 5810 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, J., Patskovsky, Y., Almo, S. et al. Structural basis for the coevolution of a viral RNA–protein complex. Nat Struct Mol Biol 15, 103–105 (2008). https://doi.org/10.1038/nsmb1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing