Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The structure of bacterial ParM filaments

Abstract

Bacterial ParM is a homolog of eukaryotic actin and is involved in moving plasmids so that they segregate properly during cell division. Using cryo-EM and three-dimensional reconstruction, we show that ParM filaments have a different structure from F-actin, with very different subunit-subunit interfaces. These interfaces result in the helical handedness of the ParM filament being opposite to that of F-actin. Like F-actin, ParM filaments have a variable twist, and we show that this involves domain-domain rotations within the ParM subunit. The present results yield new insights into polymorphisms within F-actin, as well as the evolution of polymer families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron micrographs of ParM.
Figure 2: Variable twist, and overcoming it with the IHRSR approach.
Figure 3: Filaments of ParM have the opposite handedness to that of F-actin.
Figure 4: Domain rotations within ParM.
Figure 5: Absence of nucleotide exchange after ParM polymerization.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Jensen, R.B. & Gerdes, K. Mechanism of DNA segregation in prokaryotes: ParM partitioning protein of plasmid R1 co-localizes with its replicon during the cell cycle. EMBO J. 18, 4076–4084 (1999).

    Article  CAS  Google Scholar 

  2. van den Ent, F., Moller-Jensen, J., Amos, L.A., Gerdes, K. & Lowe, J. F-actin-like filaments formed by plasmid segregation protein ParM. EMBO J. 21, 6935–6943 (2002).

    Article  CAS  Google Scholar 

  3. van den Ent, F., Amos, L.A. & Löwe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001).

    Article  CAS  Google Scholar 

  4. Lowe, J. & Amos, L.A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    Article  CAS  Google Scholar 

  5. Egelman, E.H. A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225–234 (2000).

    Article  CAS  Google Scholar 

  6. Egelman, E.H., Francis, N. & DeRosier, D.J. F-actin is a helix with a random variable twist. Nature 298, 131–135 (1982).

    Article  CAS  Google Scholar 

  7. Schmid, M.F., Sherman, M.B., Matsudaira, P. & Chiu, W. Structure of the acrosomal bundle. Nature 431, 104–107 (2004).

    Article  CAS  Google Scholar 

  8. Galkin, V.E., Orlova, A., Lukoyanova, N., Wriggers, W. & Egelman, E.H. Actin depolymerizing factor stabilizes an existing state of F-actin and can change the tilt of F-actin subunits. J. Cell Biol. 153, 75–86 (2001).

    Article  CAS  Google Scholar 

  9. Moore, P.B., Huxley, H.E. & DeRosier, D.J. Three-dimensional reconstruction of F-actin, thin filaments, and decorated thin filaments. J. Mol. Biol. 50, 279–295 (1970).

    Article  CAS  Google Scholar 

  10. Egelman, E.H. The iterative helical real space reconstruction method: Surmounting the problems posed by real polymers. J. Struct. Biol. 157, 83–94 (2007).

    Article  CAS  Google Scholar 

  11. Heuser, J. Preparing biological samples for stereomicroscopy by the quick-freeze, deep-etch, rotary-replication technique. Methods Cell Biol. 22, 97–122 (1981).

    Article  CAS  Google Scholar 

  12. Belmont, L.D., Orlova, A., Drubin, D.G. & Egelman, E.H. A change in actin conformation associated with filament instability after Pi release. Proc. Natl. Acad. Sci. USA 96, 29–34 (1999).

    Article  CAS  Google Scholar 

  13. Holmes, K.C., Popp, D., Gebhard, W. & Kabsch, W. Atomic model of the actin filament. Nature 347, 44–49 (1990).

    Article  CAS  Google Scholar 

  14. Orlova, A. et al. Probing the structure of f-actin: cross-links constrain atomic models and modify actin dynamics. J. Mol. Biol. 312, 95–106 (2001).

    Article  CAS  Google Scholar 

  15. Shvetsov, A., Musib, R., Phillips, M., Rubenstein, P.A. & Reisler, E. Locking the hydrophobic loop 262–274 to G-actin surface by a disulfide bridge prevents filament formation. Biochemistry 41, 10787–10793 (2002).

    Article  CAS  Google Scholar 

  16. Popp, D. et al. Concerning the dynamic instability of actin homolog ParM. Biochem. Biophys. Res. Commun. 353, 109–114 (2007).

    Article  CAS  Google Scholar 

  17. Bork, P., Sander, C. & Valencia, A. An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc. Natl. Acad. Sci. USA 89, 7290–7294 (1992).

    Article  CAS  Google Scholar 

  18. Chik, J.K., Lindberg, U. & Schutt, C.E. The structure of an open state of β-actin at 2.65 Ångstrom resolution. J. Mol. Biol. 263, 607–623 (1996).

    Article  CAS  Google Scholar 

  19. Klenchin, V.A., Khaitlina, S.Y. & Rayment, I. Crystal structure of polymerization-competent actin. J. Mol. Biol. 362, 140–150 (2006).

    Article  CAS  Google Scholar 

  20. Simanshu, D.K., Savithri, H.S. & Murthy, M.R. Crystal structures of ADP and AMPPNP-bound propionate kinase (TdcD) from Salmonella typhimurium: comparison with members of acetate and sugar kinase/heat shock cognate 70/actin superfamily. J. Mol. Biol. 352, 876–892 (2005).

    Article  CAS  Google Scholar 

  21. Nishimasu, H., Fushinobu, S., Shoun, H. & Wakagi, T. Crystal structures of an ATP-dependent hexokinase with broad substrate specificity from the hyperthermophilic archaeon Sulfolobus tokodaii. J. Biol. Chem. 282, 9923–9931 (2007).

    Article  CAS  Google Scholar 

  22. Aleshin, A.E. et al. Crystal structures of mutant monomeric hexokinase I reveal multiple ADP binding sites and conformational changes relevant to allosteric regulation. J. Mol. Biol. 296, 1001–1015 (2000).

    Article  CAS  Google Scholar 

  23. Aleshin, A.E., Zeng, C., Bartunik, H.D., Fromm, H.J. & Honzatko, R.B. Regulation of hexokinase I: crystal structure of recombinant human brain hexokinase complexed with glucose and phosphate. J. Mol. Biol. 282, 345–357 (1998).

    Article  CAS  Google Scholar 

  24. Nolen, B.J. & Pollard, T.D. Insights into the influence of nucleotides on actin family proteins from seven structures of Arp2/3 complex. Mol. Cell 26, 449–457 (2007).

    Article  CAS  Google Scholar 

  25. Galkin, V.E., VanLoock, M.S., Orlova, A. & Egelman, E.H. A new internal mode in F-actin helps explain the remarkable evolutionary conservation of actin's sequence and structure. Curr. Biol. 12, 570–575 (2002).

    Article  CAS  Google Scholar 

  26. Garner, E.C., Campbell, C.S. & Mullins, R.D. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306, 1021–1025 (2004).

    Article  CAS  Google Scholar 

  27. Orlova, A. & Egelman, E.H. F-actin retains a memory of angular order. Biophys. J. 78, 2180–2185 (2000).

    Article  CAS  Google Scholar 

  28. Buss, K.A. et al. Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J. Bacteriol. 183, 680–686 (2001).

    Article  CAS  Google Scholar 

  29. Aleshin, A.E. et al. Nonaggregating mutant of recombinant human hexokinase I exhibits wild-type kinetics and rod-like conformations in solution. Biochemistry 38, 8359–8366 (1999).

    Article  CAS  Google Scholar 

  30. Hara, F. et al. An actin homolog of the archaeon Thermoplasma acidophilum that retains the ancient characteristics of eukaryotic actin. J. Bacteriol. 189, 2039–2045 (2007).

    Article  CAS  Google Scholar 

  31. Doolittle, R.F. The origins and evolution of eukaryotic proteins. Phil. Trans. R. Soc. Lond. B 349, 235–240 (1995).

    Article  CAS  Google Scholar 

  32. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  Google Scholar 

  33. Ludtke, S.J., Baldwin, P.R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).

    Article  CAS  Google Scholar 

  34. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  35. Joel, P.B., Fagnant, P.M. & Trybus, K.M. Expression of a nonpolymerizable actin mutant in Sf9 cells. Biochemistry 43, 11554–11559 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants GM081303 (to E.H.E.) and GM061010 and GM675287 (to R.D.M.).

Author information

Authors and Affiliations

Authors

Contributions

A.O. prepared samples and did the EM; E.C.G. prepared samples; V.E.G. did image analysis; J.H. did the quick-freeze/deep-etch EM; R.D.M. did the nucleotide-exchange experiments; E.H.E. did image analysis.

Corresponding author

Correspondence to Edward H Egelman.

Supplementary information

Supplementary Video 1

Variable twist in ParM filaments. An animated GIF showing the averaged power spectra computed from the segments in five different bins of the histogram in Fig. 2a. This shows clearly that the sorting is effective, as the power spectra behave exactly as one would expect from segments having different twists. The layer lines shift positions (with respect to the distance from the equator) as the twist varies in these segments. (GIF 572 kb)

Supplementary Video 2

Domains rotate as twist changes. An animated GIF showing a comparison between two twist states of ParM filaments (165.2° and 169.6°) reconstructed from frozen-hydrated specimens (n 6,000 segments for each). The change in twist ( 4°) can be seen to be coupled with a larger change ( 10°) in the domain-domain orientation of the two major domains within the ParM subunit. (GIF 1270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlova, A., Garner, E., Galkin, V. et al. The structure of bacterial ParM filaments. Nat Struct Mol Biol 14, 921–926 (2007). https://doi.org/10.1038/nsmb1300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing