Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Failsafe nonsense-mediated mRNA decay does not detectably target eIF4E-bound mRNA

Abstract

Nonsense-mediated mRNA decay (NMD) generally eliminates messenger RNAs that prematurely terminate translation and occurs in all eukaryotes that have been studied, although with mechanistic variations. In mammals, NMD seems to be restricted to newly synthesized mRNA that is bound by the cap-binding heterodimer CBP80-CBP20 (CBP80/20) and typically has at least one exon junction complex (EJC) situated downstream of the nonsense codon and added post-splicing. However, mammalian NMD can also target spliced mRNA lacking an EJC downstream of the nonsense codon. Here we provide evidence that this additional pathway, known as failsafe NMD, likewise seems to be restricted to CBP80/20-bound mRNA and does not detectably target its subsequently remodeled product, eIF4E-bound mRNA. Our studies, including analyses of factor dependence, reveal important shared features of the two mammalian-cell NMD pathways as well as fundamental differences between NMD in mammals and Saccharomyces cerevisiae.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Failsafe Gl NMD targets nucleus-associated transcripts.
Figure 2: 4E-BP1 does not inhibit failsafe Gl NMD.
Figure 3: Failsafe Gl NMD reduces the abundance of CBP80-bound mRNA and its eIF4E-bound product to the same percentage of the amount of nonsense-free mRNA.
Figure 4: Effects of downregulating Upf2, Y14 or eIF4AIII on classical or failsafe Gl or TPI NMD.

Similar content being viewed by others

References

  1. Nagy, E. & Maquat, L.E. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23, 198–199 (1998).

    Article  CAS  Google Scholar 

  2. Zhang, J., Sun, X., Qian, Y. & Maquat, L.E. Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815 (1998).

    Article  CAS  Google Scholar 

  3. Thermann, R. et al. Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 17, 3484–3494 (1998).

    Article  CAS  Google Scholar 

  4. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).

    Article  CAS  Google Scholar 

  5. Neu-Yilik, G. et al. Splicing and 3′ end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs. EMBO J. 20, 532–540 (2001).

    Article  CAS  Google Scholar 

  6. Bühler, M., Steiner, S., Mohn, F., Paillusson, A. & Mühlemann, O. EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length. Nat. Struct. Mol. Biol. 13, 462–464 (2006).

    Article  Google Scholar 

  7. Cheng, J., Belgrader, P., Zhou, X. & Maquat, L.E. Introns are cis effectors of the nonsense-codon-mediated reduction in nuclear mRNA abundance. Mol. Cell. Biol. 14, 6317–6325 (1994).

    Article  CAS  Google Scholar 

  8. Wang, J., Gudikote, J.P., Olivas, O.R. & Wilkinson, M.F. Boundary-independent polar nonsense-mediated decay. EMBO Rep. 3, 274–279 (2002).

    Article  CAS  Google Scholar 

  9. Zhang, J., Sun, X., Qian, Y., LaDuca, J.P. & Maquat, L.E. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell. Biol. 18, 5272–5283 (1998).

    Article  CAS  Google Scholar 

  10. Moriarty, P.M., Reddy, C.C. & Maquat, L.E. The presence of an intron within the rat gene for selenium-dependent glutathione peroxidase 1 is not required to protect nuclear RNA from UGA-mediated decay. RNA 3, 1369–1373 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Amrani, N. et al. A faux 3′-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 432, 112–118 (2004).

    Article  CAS  Google Scholar 

  12. Ishigaki, Y., Li, X., Serin, G. & Maquat, L.E. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617 (2001).

    Article  CAS  Google Scholar 

  13. Hosoda, N., Kim, Y.K., Lejeune, F. & Maquat, L.E. CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat. Struct. Mol. Biol. 12, 893–901 (2005).

    Article  CAS  Google Scholar 

  14. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).

    Article  CAS  Google Scholar 

  15. Das, B., Guo, Z., Russo, P., Chartrand, P. & Sherman, F. The role of nuclear cap binding protein Cbc1p of yeast in mRNA termination and degradation. Mol. Cell. Biol. 20, 2827–2838 (2000).

    Article  CAS  Google Scholar 

  16. Gao, Q., Das, B., Sherman, F. & Maquat, L.E. Cap-binding protein 1-mediated and eukaryotic translation initiation factor 4E-mediated pioneer rounds of translation in yeast. Proc. Natl. Acad. Sci. USA 102, 4258–4263 (2005).

    Article  CAS  Google Scholar 

  17. Holbrook, J.A., Neu-Yilik, G., Hentze, M.W. & Kulozik, A.E. Nonsense-mediated decay approaches the clinic. Nat. Genet. 36, 801–808 (2004).

    Article  CAS  Google Scholar 

  18. Nesic, D. & Maquat, L.E. Upstream introns influence the efficiency of final intron removal and RNA 3′-end formation. Genes Dev. 8, 363–375 (1994).

    Article  CAS  Google Scholar 

  19. Kugler, W., Enssle, J., Hentze, M.W. & Kulozik, A.E. Nuclear degradation of nonsense mutated beta-globin mRNA: a post-transcriptional mechanism to protect heterozygotes from severe clinical manifestations of beta-thalassemia? Nucleic Acids Res. 23, 413–418 (1995).

    Article  CAS  Google Scholar 

  20. Gingras, A.C., Kennedy, S.G., O'Leary, M.A., Sonenberg, N. & Hay, N. 4E–BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 12, 502–513 (1998).

    Article  CAS  Google Scholar 

  21. Chiu, S.Y., Lejeune, F., Ranganathan, A.C. & Maquat, L.E. The pioneer translation initiation complex is functionally distinct from but structurally overlaps with the steady-state translation initiation complex. Genes Dev. 18, 745–754 (2004).

    Article  CAS  Google Scholar 

  22. Sun, X., Perlick, H.A., Dietz, H.C. & Maquat, L.E. A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 95, 10009–10014 (1998).

    Article  CAS  Google Scholar 

  23. Kim, Y.K., Furic, L., Desgroseillers, L. & Maquat, L.E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  Google Scholar 

  24. Gehring, N.H., Neu-Yilik, G., Schell, T., Hentze, M.W. & Kulozik, A.E. Y14 and hUpf3b form an NMD-activating complex. Mol. Cell 11, 939–949 (2003).

    Article  CAS  Google Scholar 

  25. Gatfield, D., Unterholzner, L., Ciccarelli, F.D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960–3970 (2003).

    Article  CAS  Google Scholar 

  26. Kunz, J.B., Neu-Yilik, G., Hentze, M.W., Kulozik, A.E. & Gehring, N.H. Functions of hUpf3a and hUpf3b in nonsense-mediated mRNA decay and translation. RNA 12, 1015–1022 (2006).

    Article  CAS  Google Scholar 

  27. Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).

    Article  CAS  Google Scholar 

  28. Chan, W.K. et al. An alternative branch of the nonsense-mediated decay pathway. EMBO J. 26, 1820–1830 (2007).

    Article  CAS  Google Scholar 

  29. Gehring, N.H. et al. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol. Cell 20, 65–75 (2005).

    Article  CAS  Google Scholar 

  30. Behm-Ansmant, I., Gatfield, D., Rehwinkel, J., Hilgers, V. & Izaurralde, E. A conserved role for cytoplasmic poly(A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA decay. EMBO J. 26, 1591–1601 (2007).

    Article  CAS  Google Scholar 

  31. Isken, O. & Maquat, L.E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  Google Scholar 

  32. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).

    Article  CAS  Google Scholar 

  33. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).

    Article  CAS  Google Scholar 

  34. Lykke-Andersen, J., Shu, M.D. & Steitz, J.A. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131 (2000).

    Article  CAS  Google Scholar 

  35. Rehwinkel, J., Letunic, I., Raes, J., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11, 1530–1544 (2005).

    Article  CAS  Google Scholar 

  36. Hong, X., Scofield, D.G. & Lynch, M. Intron size, abundance, and distribution within untranslated regions of genes. Mol. Biol. Evol. 23, 2392–2404 (2006).

    Article  CAS  Google Scholar 

  37. Roy, S.W. & Gilbert, W. The evolution of spliceosomal introns: patterns, puzzles and progress. Nat. Rev. Genet. 7, 211–221 (2006).

    PubMed  Google Scholar 

  38. Lynch, M., Hong, X. & Scofield, D.G. NMD and the evolution of eukaryotic gene structure. in Nonsense-Mediated mRNA Decay (ed. Maquat, L.E.) 197–211 (Landes Bioscience, Georgetown, Texas, USA, 2006).

    Google Scholar 

  39. Rogozin, I.B., Sverdlov, A.V., Babenko, V.N. & Koonin, E.V. Analysis of evolution of exon-intron structure of eukaryotic genes. Brief. Bioinform. 6, 118–134 (2005).

    Article  CAS  Google Scholar 

  40. Kertesz, S. et al. Both introns and long 3′-UTRs operate as cis-acting elements to trigger nonsense-mediated decay in plants. Nucleic Acids Res. 34, 6147–6157 (2006).

    Article  CAS  Google Scholar 

  41. Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).

    Article  CAS  Google Scholar 

  42. Serin, G., Gersappe, A., Black, J.D., Aronoff, R. & Maquat, L.E. Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell. Biol. 21, 209–223 (2001).

    Article  CAS  Google Scholar 

  43. Gingras, A.C., Svitkin, Y., Belsham, G.J., Pause, A. & Sonenberg, N. Activation of the translational suppressor 4E–BP1 following infection with encephalomyocarditis virus and poliovirus. Proc. Natl. Acad. Sci. USA 93, 5578–5583 (1996).

    Article  CAS  Google Scholar 

  44. Izaurralde, E. et al. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78, 657–668 (1994).

    Article  CAS  Google Scholar 

  45. Kataoka, N. et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6, 673–682 (2000).

    Article  CAS  Google Scholar 

  46. Mayeda, A. et al. Purification and characterization of human RNPS1: a general activator of pre-mRNA splicing. EMBO J. 18, 4560–4570 (1999).

    Article  CAS  Google Scholar 

  47. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999).

    Article  CAS  Google Scholar 

  48. Morino, S., Imataka, H., Svitkin, Y.V., Pestova, T.V. & Sonenberg, N. Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol. Cell. Biol. 20, 468–477 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Lejeune and X. Li for contributions to early phases of this work, O. Isken for comments on the manuscript, E. Izaurralde (Max Planck Institute-Tübingen) for anti-CBP80, H. Baumann and B. Held (Roswell Park Cancer Institute) for anti-MUP, G. Dreyfuss (University of Pennsylvania) for anti-Y14, A. Mayeda (Fujita Health University) for anti-RNPS1, N. Sonenberg (McGill University) for anti-eIF3b, anti-eIF4AIII, anti-4E-BP1 and the pACTAG2 plasmids, and D. Scofield for helpful conversations. This work was supported by US National Institutes of Health grant GM074593 to L.E.M. N.H. was partially supported by a Fellowship from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

D.M., N.H. and Y.K.K. and L.E.M. designed experiments and analyzed data; D.M., N.H. and Y.K.K. performed experiments; and D.M. and L.E.M. wrote the paper.

Corresponding author

Correspondence to Lynne E Maquat.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Data, Supplementary Methods (PDF 732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, D., Hosoda, N., Kim, Y. et al. Failsafe nonsense-mediated mRNA decay does not detectably target eIF4E-bound mRNA. Nat Struct Mol Biol 14, 974–979 (2007). https://doi.org/10.1038/nsmb1297

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing