Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression

Abstract

Autoinhibition of the Rho guanine nucleotide exchange factor ASEF is relieved by interaction with the APC tumor suppressor. Here we show that binding of the armadillo repeats of APC to a 'core APC-binding' (CAB) motif within ASEF, or truncation of the SH3 domain of ASEF, relieves autoinhibition, allowing the specific activation of CDC42. Structural determination of autoinhibited ASEF reveals that the SH3 domain forms an extensive interface with the catalytic DH and PH domains to obstruct binding and activation of CDC42, and the CAB motif is positioned adjacent to the SH3 domain to facilitate activation by APC. In colorectal cancer cell lines, full-length, but not truncated, APC activates CDC42 in an ASEF-dependent manner to suppress anchorage-independent growth. We therefore propose a model in which ASEF acts as a tumor suppressor when activated by APC and inactivation of ASEF by mutation or APC truncation promotes tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ASEF is a GEF specific for CDC42.
Figure 2: ASEF induces filopodia in NIH3T3 fibroblasts.
Figure 3: ASEF is autoinhibited by the SH3 domain.
Figure 4: Identification of CAP motif in ASEF and ASEF2.
Figure 5: Differential activation of ASEF by full-length and truncated APC.
Figure 6: Structure of autoinhibited ASEF.
Figure 7: Detailed view of the SH3 domain interface.
Figure 8: ASEF is a candidate tumor suppressor.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Fodde, R., Smits, R. & Clevers, H. APC, signal transduction and genetic instability in colorectal cancer. Nat. Rev. Cancer 1, 55–67 (2001).

    Article  CAS  Google Scholar 

  2. Polakis, P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim. Biophys. Acta 1332, F127–F147 (1997).

    CAS  PubMed  Google Scholar 

  3. Segditsas, S. & Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006).

    Article  CAS  Google Scholar 

  4. Hanson, C.A. & Miller, J.R. Non-traditional roles for the Adenomatous Polyposis Coli (APC) tumor suppressor protein. Gene 361, 1–12 (2005).

    Article  CAS  Google Scholar 

  5. Rossman, K.L., Der, C.J. & Sondek, J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat. Rev. Mol. Cell Biol. 6, 167–180 (2005).

    Article  CAS  Google Scholar 

  6. Reid, T., Bathoorn, A., Ahmadian, M.R. & Collard, J.G. Identification and characterization of hPEM-2, a guanine nucleotide exchange factor specific for CDC42. J. Biol. Chem. 274, 33587–33593 (1999).

    Article  CAS  Google Scholar 

  7. Hamann, M.J., Lubking, C.M., Luchini, D.N. & Billadeau, D.D. Asef2 functions as a CDC42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element. Mol. Cell. Biol. 27, 1380–1393 (2007).

    Article  CAS  Google Scholar 

  8. Kawasaki, Y. et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 289, 1194–1197 (2000).

    Article  CAS  Google Scholar 

  9. Kawasaki, Y., Sato, R. & Akiyama, T. Mutated APC and Asef are involved in the migration of colorectal tumour cells. Nat. Cell Biol. 5, 211–215 (2003).

    Article  CAS  Google Scholar 

  10. Worthylake, D.K., Rossman, K.L. & Sondek, J. Crystal structure of RAC1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 408, 682–688 (2000).

    Article  CAS  Google Scholar 

  11. Gao, Y., Xing, J., Streuli, M., Leto, T.L. & Zheng, Y. Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors. J. Biol. Chem. 276, 47530–47541 (2001).

    Article  CAS  Google Scholar 

  12. Karnoub, A.E. et al. Molecular basis for RAC1 recognition by guanine nucleotide exchange factors. Nat. Struct. Biol. 8, 1037–1041 (2001).

    Article  CAS  Google Scholar 

  13. Cheng, L. et al. RhoGEF specificity mutants implicate RhoA as a target for Dbs transforming activity. Mol. Cell. Biol. 22, 6895–6905 (2002).

    Article  CAS  Google Scholar 

  14. Snyder, J.T. et al. Structural basis for the selective activation of Rho GTPases by Dbl exchange factors. Nat. Struct. Biol. 9, 468–475 (2002).

    Article  CAS  Google Scholar 

  15. Nobes, C.D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  Google Scholar 

  16. Nobes, C.D. & Hall, A. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144, 1235–1244 (1999).

    Article  CAS  Google Scholar 

  17. Thiesen, S., Kubart, S., Ropers, H.H. & Nothwang, H.G. Isolation of two novel human RhoGEFs, ARHGEF3 and ARHGEF4, in 3p13–21 and 2q22. Biochem. Biophys. Res. Commun. 273, 364–369 (2000).

    Article  CAS  Google Scholar 

  18. Gotthardt, K. & Ahmadian, M.R. Asef is a CDC42-specific guanine nucleotide exchange factor. Biol. Chem. 388, 67–71 (2007).

    Article  CAS  Google Scholar 

  19. Nalbant, P., Hodgson, L., Kraynov, V., Toutchkine, A. & Hahn, K.M. Activation of endogenous CDC42 visualized in living cells. Science 305, 1615–1619 (2004).

    Article  CAS  Google Scholar 

  20. Kins, S., Betz, H. & Kirsch, J. Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin. Nat. Neurosci. 3, 22–29 (2000).

    Article  CAS  Google Scholar 

  21. Nathke, I. Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat. Rev. Cancer 6, 967–974 (2006).

    Article  Google Scholar 

  22. Munemitsu, S. et al. The APC gene product associates with microtubules in vivo and promotes their assembly in vitro. Cancer Res. 54, 3676–3681 (1994).

    CAS  PubMed  Google Scholar 

  23. Rosin-Arbesfeld, R., Ihrke, G. & Bienz, M. Actin-dependent membrane association of the APC tumour suppressor in polarized mammalian epithelial cells. EMBO J. 20, 5929–5939 (2001).

    Article  CAS  Google Scholar 

  24. Kurokawa, K., Itoh, R.E., Yoshizaki, H., Nakamura, Y.O. & Matsuda, M. Coactivation of RAC1 and CDC42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol. Biol. Cell 15, 1003–1010 (2004).

    Article  CAS  Google Scholar 

  25. Watanabe, T. et al. Interaction with IQGAP1 links APC to RAC1, CDC42, and actin filaments during cell polarization and migration. Dev. Cell 7, 871–883 (2004).

    Article  CAS  Google Scholar 

  26. Smith, K.J. et al. Wild-type but not mutant APC associates with the microtubule cytoskeleton. Cancer Res. 54, 3672–3675 (1994).

    CAS  PubMed  Google Scholar 

  27. Li, S.S. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem. J. 390, 641–653 (2005).

    Article  CAS  Google Scholar 

  28. Xiang, S. et al. The crystal structure of CDC42 in complex with collybistin II, a gephyrin-interacting guanine nucleotide exchange factor. J. Mol. Biol. 359, 35–46 (2006).

    Article  CAS  Google Scholar 

  29. Murayama, K. et al. Crystal structure of the rac activator, Asef, reveals its autoinhibitory mechanism. J. Biol. Chem. 282, 4238–4242 (2007).

    Article  CAS  Google Scholar 

  30. Soisson, S.M., Nimnual, A.S., Uy, M., Bar-Sagi, D. & Kuriyan, J. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Cell 95, 259–268 (1998).

    Article  CAS  Google Scholar 

  31. Morin, P.J. et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  Google Scholar 

  32. El-Bahrawy, M., Poulsom, R., Rowan, A.J., Tomlinson, I.T. & Alison, M.R. Characterization of the E-cadherin/catenin complex in colorectal carcinoma cell lines. Int. J. Exp. Pathol. 85, 65–74 (2004).

    Article  CAS  Google Scholar 

  33. Feig, L.A. Tools of the trade: use of dominant-inhibitory mutants of Ras-family GTPases. Nat. Cell Biol. 1, E25–E27 (1999).

    Article  CAS  Google Scholar 

  34. Sjoblom, T. et al. The consensus coding sequences of human breast and colorectal cancers. Science 314, 268–274 (2006).

    Article  Google Scholar 

  35. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  36. Knudson, A.G. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1, 157–162 (2001).

    Article  CAS  Google Scholar 

  37. Doublie, S. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276, 523–530 (1997).

    Article  CAS  Google Scholar 

  38. Snyder, J.T., Singer, A.U., Wing, M.R., Harden, T.K. & Sondek, J. The pleckstrin homology domain of phospholipase C-beta2 as an effector site for Rac. J. Biol. Chem. 278, 21099–21104 (2003).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  40. Sheldrick, G.M. SHELXS86—Program for Crystal Structural Solution (University of Gottingen, Germany, 1986).

    Google Scholar 

  41. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. Cowtan, K.D. DM: an automated procedure for phase improvement by density modification. Joint CCP4 ESF-EACBM Newsl. Protein Crystallogr. 31, 34–38 (1994).

    Google Scholar 

  43. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  44. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  45. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Thiel and L. Bauer for technical assistance, Keith Burridge, (University of North Carolina) for the gift of GST-PAK RBD, the M. Hooker imaging facility at the University of North Carolina, Chapel Hill, and the staff at the SER-CAT beamlines for help with data collection. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. W-31-109-Eng-38. J.S. is supported by grants GM65533 and GM62299 from the US National Institutes of Health. C.J.D. is supported by grant CA063071 from the US National Institutes of Health. K.L.R. is supported by postdoctoral fellowship grant PF-05-129-01(GMC) from the American Cancer Society.

Author information

Authors and Affiliations

Authors

Contributions

N.M. and K.L.R. conceived, analyzed and performed experiments and wrote the manuscript. L.B. assisted with the structural determination of ASEF. M.E.Y. contributed ideas and assisted with construct design and protein purification. J.S. and C.J.D. contributed ideas and evaluated and discussed data.

Corresponding authors

Correspondence to Channing J Der or Kent L Rossman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Data, Supplementary Discussion, Supplementary Methods (PDF 10088 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitin, N., Betts, L., Yohe, M. et al. Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression. Nat Struct Mol Biol 14, 814–823 (2007). https://doi.org/10.1038/nsmb1290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1290

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing