Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CCDC98 targets BRCA1 to DNA damage sites

Abstract

Breast cancer-1 (BRCA1) participates in the DNA damage response. However, the mechanism by which BRCA1 is recruited to DNA damage sites remains elusive. Recently, we have demonstrated that a ubiquitin-binding protein, RAP80, is required for DNA damage–induced BRCA1 translocation. Here we identify another component, CCDC98, in the BRCA1–RAP80 complex. CCDC98 mediates BRCA1's association with RAP80. Moreover, CCDC98 controls both DNA damage–induced formation of BRCA1 foci and BRCA1-dependent G2/M checkpoint activation. Together, our results demonstrate that CCDC98 is a BRCA1 binding partner that mediates BRCA1 function in response to DNA damage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CCDC98 associates with BRCA1 and RAP80.
Figure 2: Mapping the interaction domains of BRCA1, CCDC98 and RAP80.
Figure 3: CCDC98 mediates BRCA1-RAP80 association.
Figure 4: CCDC98 targets BRCA1 to DNA damage sites.
Figure 5: CCDC98 participates in DNA damage–induced G2/M checkpoint activation.

Similar content being viewed by others

References

  1. Wu, L.C. et al. Identification of a RING protein that can interact in vivo with the BRCA1 gene product. Nat. Genet. 14, 430–440 (1996).

    Article  CAS  Google Scholar 

  2. Lorick, K.L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96, 11364–11369 (1999).

    Article  CAS  Google Scholar 

  3. Brzovic, P.S., Rajagopal, P., Hoyt, D.W., King, M.C. & Klevit, R.E. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat. Struct. Biol. 8, 833–837 (2001).

    Article  CAS  Google Scholar 

  4. Wu-Baer, F., Lagrazon, K., Yuan, W. & Baer, R. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278, 34743–34746 (2003).

    Article  CAS  Google Scholar 

  5. Chen, A., Kleiman, F.E., Manley, J.L., Ouchi, T. & Pan, Z.Q. Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J. Biol. Chem. 277, 22085–22092 (2002).

    Article  CAS  Google Scholar 

  6. Xia, Y., Pao, G.M., Chen, H.W., Verma, I.M. & Hunter, T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 278, 5255–5263 (2003).

    Article  CAS  Google Scholar 

  7. Yu, X., Chini, C.C., He, M., Mer, G. & Chen, J. The BRCT domain is a phospho-protein binding domain. Science 302, 639–642 (2003).

    Article  CAS  Google Scholar 

  8. Rodriguez, M., Yu, X., Chen, J. & Songyang, Z. Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J. Biol. Chem. 278, 52914–52918 (2003).

    Article  CAS  Google Scholar 

  9. Manke, I.A., Lowery, D.M., Nguyen, A. & Yaffe, M.B. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302, 636–639 (2003).

    Article  CAS  Google Scholar 

  10. Shiozaki, E.N., Gu, L., Yan, N. & Shi, Y. Structure of the BRCT repeats of BRCA1 bound to a BACH1 phosphopeptide: implications for signaling. Mol. Cell 14, 405–412 (2004).

    Article  CAS  Google Scholar 

  11. Clapperton, J.A. et al. Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nat. Struct. Mol. Biol. 11, 512–518 (2004).

    Article  CAS  Google Scholar 

  12. Botuyan, M.V. et al. Structural basis of BACH1 phosphopeptide recognition by BRCA1 tandem BRCT domains. Structure 12, 1137–1146 (2004).

    Article  CAS  Google Scholar 

  13. Williams, R.S., Lee, M.S., Hau, D.D. & Glover, J.N. Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nat. Struct. Mol. Biol. 11, 519–525 (2004).

    Article  CAS  Google Scholar 

  14. Venkitaraman, A.R. Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell 108, 171–182 (2002).

    Article  CAS  Google Scholar 

  15. Scully, R. & Livingston, D.M. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 408, 429–432 (2000).

    Article  CAS  Google Scholar 

  16. Starita, L.M. & Parvin, J.D. The multiple nuclear functions of BRCA1: transcription, ubiquitination and DNA repair. Curr. Opin. Cell Biol. 15, 345–350 (2003).

    Article  CAS  Google Scholar 

  17. Narod, S.A. & Foulkes, W.D. BRCA1 and BRCA2: 1994 and beyond. Nat. Rev. Cancer 4, 665–676 (2004).

    Article  CAS  Google Scholar 

  18. Yoshida, K. & Miki, Y. Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci. 95, 866–871 (2004).

    Article  CAS  Google Scholar 

  19. Ting, N.S. & Lee, W.H. The DNA double-strand break response pathway: becoming more BRCAish than ever. DNA Repair (Amst.) 3, 935–944 (2004).

    Article  CAS  Google Scholar 

  20. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K. & Linn, S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39–85 (2004).

    Article  CAS  Google Scholar 

  21. Zhou, B.B. & Elledge, S.J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000).

    Article  CAS  Google Scholar 

  22. Cortez, D., Wang, Y., Qin, J. & Elledge, S.J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).

    Article  CAS  Google Scholar 

  23. Tibbetts, R.S. et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev. 14, 2989–3002 (2000).

    Article  CAS  Google Scholar 

  24. Gatei, M. et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res. 60, 3299–3304 (2000).

    CAS  PubMed  Google Scholar 

  25. Gatei, M. et al. Ataxia telangiectasia mutated (ATM) kinase and ATM and Rad3 related kinase mediate phosphorylation of Brca1 at distinct and overlapping sites. In vivo assessment using phospho-specific antibodies. J. Biol. Chem. 276, 17276–17280 (2001).

    Article  CAS  Google Scholar 

  26. Lee, E.Y. BRCA1 and Chk1 in G2/M checkpoint: a new order of regulation. Cell Cycle 1, 178–180 (2002).

    Article  CAS  Google Scholar 

  27. Yarden, R.I., Pardo-Reoyo, S., Sgagias, M., Cowan, K.H. & Brody, L.C. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat. Genet. 30, 285–289 (2002).

    Article  Google Scholar 

  28. Scully, R. et al. Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435 (1997).

    Article  CAS  Google Scholar 

  29. Paull, T.T. et al. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10, 886–895 (2000).

    Article  CAS  Google Scholar 

  30. Scully, R. et al. Genetic analysis of BRCA1 function in a defined tumor cell line. Mol. Cell 4, 1093–1099 (1999).

    Article  CAS  Google Scholar 

  31. Rogakou, E.P., Boon, C., Redon, C. & Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146, 905–916 (1999).

    Article  CAS  Google Scholar 

  32. Cantor, S.B. et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105, 149–160 (2001).

    Article  CAS  Google Scholar 

  33. Greenberg, R.A. et al. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev. 20, 34–46 (2006).

    Article  CAS  Google Scholar 

  34. Yu, X., Fu, S., Lai, M., Baer, R. & Chen, J. BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP. Genes Dev. 20, 1721–1726 (2006).

    Article  CAS  Google Scholar 

  35. Yu, X. & Chen, J. DNA damage-induced cell cycle checkpoint control requires CtIP, a phosphorylation-dependent binding partner of BRCA1 C-terminal domains. Mol. Cell. Biol. 24, 9478–9486 (2004).

    Article  CAS  Google Scholar 

  36. Yu, X., Wu, L.C., Bowcock, A.M., Aronheim, A. & Baer, R. The C-terminal (BRCT) domains of BRCA1 interact in vivo with CtIP, a protein implicated in the CtBP pathway of transcriptional repression. J. Biol. Chem. 273, 25388–25392 (1998).

    Article  CAS  Google Scholar 

  37. Wong, A.K. et al. Characterization of a carboxy-terminal BRCA1 interacting protein. Oncogene 17, 2279–2285 (1998).

    Article  CAS  Google Scholar 

  38. Li, S. et al. Binding of CtIP to the BRCT repeats of BRCA1 involved in the transcription regulation of p21 is disrupted upon DNA damage. J. Biol. Chem. 274, 11334–11338 (1999).

    Article  CAS  Google Scholar 

  39. Li, S. et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 406, 210–215 (2000).

    Article  CAS  Google Scholar 

  40. Kim, H., Chen, J. & Yu, X. Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316, 1202–1205 (2007).

    Article  CAS  Google Scholar 

  41. Sobhian, B. et al. RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316, 1198–1202 (2007).

    Article  CAS  Google Scholar 

  42. Wang, B. et al. Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316, 1194–1198 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Chen and L. Ye for technical support, and L. Lu for manuscript proofreading. This work was supported by the US Department of Defense Breast Cancer Research Program, the Ovarian Cancer Research Fund and the University of Michigan Cancer Center. X.Y. is the recipient of an American Association for Cancer Research–Susan G. Komen for the Cure Career Development Award for Breast Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. purified proteins and identified the BRCA1–CCDC98–RAP80 complex. Z.L. and J.W. analyzed the protein interactions of this complex. Z.L. and X.Y. examined the role of CCDC98 in the formation of DNA damage–induced protein foci and G2/M checkpoint activation. X.Y. drafted the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiaochun Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Methods (PDF 429 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Wu, J. & Yu, X. CCDC98 targets BRCA1 to DNA damage sites. Nat Struct Mol Biol 14, 716–720 (2007). https://doi.org/10.1038/nsmb1279

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1279

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing