Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque

Abstract

E. coli DNA gyrase uses the energy of ATP hydrolysis to introduce essential negative supercoils into the genome, thereby working against the mechanical stresses that accumulate in supercoiled DNA. Using a magnetic-tweezers assay, we demonstrate that small changes in force and torque can switch gyrase among three distinct modes of activity. Under low mechanical stress, gyrase introduces negative supercoils by a mechanism that depends on DNA wrapping. Elevated tension or positive torque suppresses DNA wrapping, revealing a second mode of activity that resembles the activity of topoisomerase IV. This 'distal T-segment capture' mode results in active relaxation of left-handed braids and positive supercoils. A third mode is responsible for the ATP-independent relaxation of negative supercoils. We present a branched kinetic model that quantitatively accounts for all of our single-molecule results and agrees with existing biochemical data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gyrase subunit composition and mechanism of action.
Figure 2: Magnetic tweezers experimental setup.
Figure 3: Activities of gyrase at low forces.
Figure 4: Activity of gyrase at high DNA tensions.
Figure 5: Passive mode of relaxation by gyrase.
Figure 6: Gyrase unbraids DNA.
Figure 7: Force-velocity curves and proposed mechanochemical model.

Similar content being viewed by others

References

  1. Wang, J.C. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3, 430–440 (2002).

    Article  CAS  Google Scholar 

  2. Maxwell, A. DNA gyrase as a drug target. Trends Microbiol. 5, 102–109 (1997).

    Article  CAS  Google Scholar 

  3. Gellert, M., Mizuuchi, K., O'Dea, M.H., Itoh, T. & Tomizawa, J.I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. USA 74, 4772–4776 (1977).

    Article  CAS  Google Scholar 

  4. Higgins, N.P., Peebles, C.L., Sugino, A. & Cozzarelli, N.R. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proc. Natl. Acad. Sci. USA 75, 1773–1777 (1978).

    Article  CAS  Google Scholar 

  5. Kreuzer, K.N. & Cozzarelli, N.R. Formation and resolution of DNA catenanes by DNA gyrase. Cell 20, 245–254 (1980).

    Article  CAS  Google Scholar 

  6. Mizuuchi, K., Fisher, L.M., O'Dea, M.H. & Gellert, M. DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc. Natl. Acad. Sci. USA 77, 1847–1851 (1980).

    Article  CAS  Google Scholar 

  7. Liu, L.F., Liu, C.C. & Alberts, B.M. Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 19, 697–707 (1980).

    Article  CAS  Google Scholar 

  8. Ullsperger, C. & Cozzarelli, N.R. Contrasting enzymatic activities of topoisomerase IV and DNA gyrase from Escherichia coli. J. Biol. Chem. 271, 31549–31555 (1996).

    Article  CAS  Google Scholar 

  9. Zechiedrich, E.L. & Cozzarelli, N.R. Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. Genes Dev. 9, 2859–2869 (1995).

    Article  CAS  Google Scholar 

  10. Brown, P.O. & Cozzarelli, N.R. A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206, 1081–1083 (1979).

    Article  CAS  Google Scholar 

  11. Morrison, A. & Cozzarelli, N.R. Contacts between DNA gyrase and its binding site on DNA: features of symmetry and asymmetry revealed by protection from nucleases. Proc. Natl. Acad. Sci. USA 78, 1416–1420 (1981).

    Article  CAS  Google Scholar 

  12. Fisher, L.M., Mizuuchi, K., O'Dea, M.H., Ohmori, H. & Gellert, M. Site-specific interaction of DNA gyrase with DNA. Proc. Natl. Acad. Sci. USA 78, 4165–4169 (1981).

    Article  CAS  Google Scholar 

  13. Kirkegaard, K. & Wang, J.C. Mapping the topography of DNA wrapped around gyrase by nucleolytic and chemical probing of complexes of unique DNA sequences. Cell 23, 721–729 (1981).

    Article  CAS  Google Scholar 

  14. Liu, L.F. & Wang, J.C. DNA-DNA gyrase complex: the wrapping of the DNA duplex outside the enzyme. Cell 15, 979–984 (1978).

    Article  CAS  Google Scholar 

  15. Peebles, C.L. et al. Structure and activities of Escherichia coli DNA gyrase. Cold Spring Harb. Symp. Quant. Biol. 43, 41–52 (1979).

    Article  CAS  Google Scholar 

  16. Reece, R.J. & Maxwell, A. The C-terminal domain of the Escherichia coli DNA gyrase A subunit is a DNA-binding protein. Nucleic Acids Res. 19, 1399–1405 (1991).

    Article  CAS  Google Scholar 

  17. Ruthenburg, A.J., Graybosch, D.M., Huetsch, J.C. & Verdine, G.L. A superhelical spiral in the Escherichia coli DNA gyrase A C-terminal domain imparts unidirectional supercoiling bias. J. Biol. Chem. 280, 26177–26184 (2005).

    Article  CAS  Google Scholar 

  18. Oram, M., Travers, A.A., Howells, A.J., Maxwell, A. & Pato, M.L. Dissection of the bacteriophage Mu strong gyrase site (SGS): significance of the SGS right arm in Mu biology and DNA gyrase mechanism. J. Bacteriol. 188, 619–632 (2006).

    Article  CAS  Google Scholar 

  19. Gellert, M., Fisher, L.M. & O'Dea, M.H. DNA gyrase: purification and catalytic properties of a fragment of gyrase B protein. Proc. Natl. Acad. Sci. USA 76, 6289–6293 (1979).

    Article  CAS  Google Scholar 

  20. Sugino, A., Higgins, N.P., Brown, P.O., Peebles, C.L. & Cozzarelli, N.R. Energy coupling in DNA gyrase and the mechanism of action of novobiocin. Proc. Natl. Acad. Sci. USA 75, 4838–4842 (1978).

    Article  CAS  Google Scholar 

  21. Mizuuchi, K., O'Dea, M.H. & Gellert, M. DNA gyrase: subunit structure and ATPase activity of the purified enzyme. Proc. Natl. Acad. Sci. USA 75, 5960–5963 (1978).

    Article  CAS  Google Scholar 

  22. Wang, J.C. Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107–144 (1998).

    Article  CAS  Google Scholar 

  23. Gore, J. et al. Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439, 100–104 (2006).

    Article  CAS  Google Scholar 

  24. Strick, T.R., Allemand, J.F., Bensimon, D. & Croquette, V. Behavior of supercoiled DNA. Biophys. J. 74, 2016–2028 (1998).

    Article  CAS  Google Scholar 

  25. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    Article  CAS  Google Scholar 

  26. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    Article  CAS  Google Scholar 

  27. Allemand, J.F., Bensimon, D., Lavery, R. & Croquette, V. Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proc. Natl. Acad. Sci. USA 95, 14152–14157 (1998).

    Article  CAS  Google Scholar 

  28. Williams, N.L. & Maxwell, A. Probing the two-gate mechanism of DNA gyrase using cysteine cross-linking. Biochemistry 38, 13502–13511 (1999).

    Article  CAS  Google Scholar 

  29. Kampranis, S.C. & Maxwell, A. Conversion of DNA gyrase into a conventional type II topoisomerase. Proc. Natl. Acad. Sci. USA 93, 14416–14421 (1996).

    Article  CAS  Google Scholar 

  30. Charvin, G., Bensimon, D. & Croquette, V. Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 9820–9825 (2003).

    Article  CAS  Google Scholar 

  31. Stone, M.D. et al. Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc. Natl. Acad. Sci. USA 100, 8654–8659 (2003).

    Article  CAS  Google Scholar 

  32. Charvin, G., Vologodskii, A., Bensimon, D. & Croquette, V. Braiding DNA: experiments, simulations, and models. Biophys. J. 88, 4124–4136 (2005).

    Article  CAS  Google Scholar 

  33. Baker, J.E. et al. Myosin V processivity: multiple kinetic pathways for head-to-head coordination. Proc. Natl. Acad. Sci. USA 101, 5542–5546 (2004).

    Article  CAS  Google Scholar 

  34. Somogyi, K. & Rorth, P. Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration. Dev. Cell 7, 85–93 (2004).

    Article  CAS  Google Scholar 

  35. Olson, M.F. Contraction reaction: mechanical regulation of Rho GTPase. Trends Cell Biol. 14, 111–114 (2004).

    Article  CAS  Google Scholar 

  36. Bustamante, C., Chemla, Y.R., Forde, N.R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  Google Scholar 

  37. Corbett, K.D., Schoeffler, A.J., Thomsen, N.D. & Berger, J.M. The structural basis for substrate specificity in DNA topoisomerase IV. J. Mol. Biol. 351, 545–561 (2005).

    Article  CAS  Google Scholar 

  38. Sugino, A. & Cozzarelli, N.R. The intrinsic ATPase of DNA gyrase. J. Biol. Chem. 255, 6299–6306 (1980).

    CAS  PubMed  Google Scholar 

  39. Bates, A.D., O'Dea, M.H. & Gellert, M. Energy coupling in Escherichia coli DNA gyrase: the relationship between nucleotide binding, strand passage, and DNA supercoiling. Biochemistry 35, 1408–1416 (1996).

    Article  CAS  Google Scholar 

  40. Zechiedrich, E.L., Khodursky, A.B. & Cozzarelli, N.R. Topoisomerase IV, not gyrase, decatenates products of site-specific recombination in Escherichia coli. Genes Dev. 11, 2580–2592 (1997).

    Article  CAS  Google Scholar 

  41. Bates, A.D. & Maxwell, A. DNA gyrase can supercoil DNA circles as small as 174 base pairs. EMBO J. 8, 1861–1866 (1989).

    Article  CAS  Google Scholar 

  42. Orphanides, G. & Maxwell, A. Evidence for a conformational change in the DNA gyrase-DNA complex from hydroxyl radical footprinting. Nucleic Acids Res. 22, 1567–1575 (1994).

    Article  CAS  Google Scholar 

  43. Heddle, J.G., Mitelheiser, S., Maxwell, A. & Thomson, N.H. Nucleotide binding to DNA gyrase causes loss of DNA wrap. J. Mol. Biol. 337, 597–610 (2004).

    Article  CAS  Google Scholar 

  44. Espeli, O., Nurse, P., Levine, C., Lee, C. & Marians, K.J. SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol. Microbiol. 50, 495–509 (2003).

    Article  CAS  Google Scholar 

  45. Revyakin, A., Ebright, R.H. & Strick, T.R. Single-molecule DNA nanomanipulation: improved resolution through use of shorter DNA fragments. Nat. Methods 2, 127–138 (2005).

    Article  CAS  Google Scholar 

  46. Crisona, N.J., Strick, T.R., Bensimon, D., Croquette, V. & Cozzarelli, N.R. Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–2892 (2000).

    Article  CAS  Google Scholar 

  47. Costenaro, L., Grossmann, J.G., Ebel, C. & Maxwell, A. Small-angle X-ray scattering reveals the solution structure of the full-length DNA gyrase a subunit. Structure 13, 287–296 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to dedicate this work to our friend and colleague Nicholas Cozzarelli, who passed away during completion of this research. We thank A. Schoeffler and J. Berger (University of California, Berkeley) for the gift of enzyme and P. Higgins (University of Alabama at Birmingham) for plasmids. This work was supported by US National Institutes of Health Grants GM31655 (to N.R.C.) and GM32543 (to C.B.), the Human Frontiers Science Organization through a long-term fellowship (to M.N.), the Program in Mathematics and Molecular Biology from the Burroughs Wellcome Foundation (M.N.), US Department of Energy Grant KP1102-DE-AC0376SF00098 (to C.B.), and the Fannie and John Hertz Foundation (J.G.).

Author information

Authors and Affiliations

Authors

Contributions

M.N., M.D.S, Z.B. and J.G collected and interpreted single-molecule data, supervised by C.B. and N.R.C. N.J.C. collected and analyzed ensemble data. S.-C.H. helped with the construction of single-molecule instruments. S.M. and A.M. contributed ideas and reagents. M.N., M.D.S., Z.B., J.G., N.J.C., C.B. and N.R.C. wrote the paper.

Corresponding author

Correspondence to Carlos Bustamante.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gyrase activity on (+) and (−) supercoiled substrates in bulk. (PDF 319 kb)

Supplementary Fig. 2

The rate of (+) supercoil relaxation at high forces is force-independent. (PDF 44 kb)

Supplementary Fig. 3

The passive mode requires the presence of (−) supercoils. (PDF 31 kb)

Supplementary Data

Derivation of kinetic equations. (PDF 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nöllmann, M., Stone, M., Bryant, Z. et al. Multiple modes of Escherichia coli DNA gyrase activity revealed by force and torque. Nat Struct Mol Biol 14, 264–271 (2007). https://doi.org/10.1038/nsmb1213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing