Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dynamics of the unbound head during myosin V processive translocation

This article has been updated

Abstract

Myosin V moves cargoes along actin filaments by walking hand over hand. Although numerous studies support the basic hand-over-hand model, little is known about the fleeting intermediate that occurs when the rear head detaches from the filament. Here we use submillisecond dark-field imaging of gold nanoparticle–labeled myosin V to directly observe the free head as it releases from the actin filament, diffuses forward and rebinds. We find that the unbound head rotates freely about the lever-arm junction, a trait that likely facilitates travel through crowded actin meshworks.

NOTE: In the version of this article initially published online, the length of the step shown in Figure 3e was mislabeled: it should be +25nm, not +24nm. In addition, the word "(right)" was erroneously included in the legend of Figure 2b. The errors have been corrected for all versions of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tracking the motion of the M5 lever arm with millisecond time resolution.
Figure 2: Characterization of the one-head-bound intermediate.
Figure 3: A myosin V model mechanism.

Similar content being viewed by others

Change history

  • 18 February 2007

    NOTE: In the version of this article initially published online, the length of the step shown in Figure 3e was mislabeled: it should be +25nm, not +24nm. In addition, the word "(right)" was erroneously included in the legend of Figure 2b. The errors have been corrected for all versions of the article.

References

  1. Sellers, J.R. & Veigel, C. Curr. Opin. Cell Biol. 18, 68–73 (2006).

    Article  CAS  Google Scholar 

  2. Kitamura, K., Tokunaga, M., Iwane, A.H. & Yanagida, T. Nature 397, 129–134 (1999).

    Article  CAS  Google Scholar 

  3. Watanabe, T.M. et al. Proc. Natl. Acad. Sci. USA 101, 9630–9635 (2004).

    Article  CAS  Google Scholar 

  4. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., Jr. & Itoh, H. Nature 410, 898–904 (2001).

    Article  CAS  Google Scholar 

  5. Yildiz, A. et al. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  6. De La Cruz, E.M., Wells, A.L., Rosenfeld, S.S., Ostap, E.M. & Sweeney, H.L. Proc. Natl. Acad. Sci. USA 96, 13726–13731 (1999).

    Article  CAS  Google Scholar 

  7. Forkey, J.N., Quinlan, M.E., Shaw, M.A., Corrie, J.E. & Goldman, Y.E. Nature 422, 399–404 (2003).

    Article  CAS  Google Scholar 

  8. Ali, M.Y. et al. Nat. Struct. Biol. 9, 464–467 (2002).

    Article  CAS  Google Scholar 

  9. Veigel, C., Schmitz, S., Wang, F. & Sellers, J.R. Nat. Cell Biol. 7, 861–869 (2005).

    Article  CAS  Google Scholar 

  10. Veigel, C., Wang, F., Bartoo, M.L., Sellers, J.R. & Molloy, J.E. Nat. Cell Biol. 4, 59–65 (2002).

    Article  CAS  Google Scholar 

  11. Uemura, S., Higuchi, H., Olivares, A.O., De La Cruz, E.M. & Ishiwata, S. Nat. Struct. Mol. Biol. 11, 877–883 (2004).

    Article  CAS  Google Scholar 

  12. De La Cruz, E.M., Wells, A.L., Sweeney, H.L. & Ostap, E.M. Biochemistry 39, 14196–14202 (2000).

    Article  CAS  Google Scholar 

  13. Rosenfeld, S.S. & Sweeney, H.L. J. Biol. Chem. 279, 40100–40111 (2004).

    Article  CAS  Google Scholar 

  14. Baker, J.E. et al. Proc. Natl. Acad. Sci. USA 101, 5542–5546 (2004).

    Article  CAS  Google Scholar 

  15. Syed, S., Snyder, G.E., Franzini-Armstrong, C., Selvin, P.R. & Goldman, Y.E. EMBO J. 25, 1795–1803 (2006).

    Article  CAS  Google Scholar 

  16. Toprak, E. et al. Proc. Natl. Acad. Sci. USA 103, 6495–6499 (2006).

    Article  CAS  Google Scholar 

  17. Walker, M.L. et al. Nature 405, 804–807 (2000).

    Article  CAS  Google Scholar 

  18. Burgess, S. et al. J. Cell Biol. 159, 983–991 (2002).

    Article  CAS  Google Scholar 

  19. Purcell, T.J., Sweeney, H.L. & Spudich, J.A. Proc. Natl. Acad. Sci. USA 102, 13873–13878 (2005).

    Article  CAS  Google Scholar 

  20. Olivares, A.O., Chang, W., Mooseker, M.S., Hackney, D.D. & De La Cruz, E.M. J. Biol. Chem. 281, 31326–31336 (2006).

    Article  CAS  Google Scholar 

  21. De La Cruz, E.M. & Ostap, E.M. Curr. Opin. Cell Biol. 16, 61–67 (2004).

    Article  CAS  Google Scholar 

  22. Espindola, F.S. et al. Cell Motil. Cytoskeleton 47, 269–281 (2000).

    Article  CAS  Google Scholar 

  23. Frank, D.J. et al. J. Biol. Chem. 281, 24728–24736 (2006).

    Article  CAS  Google Scholar 

  24. Snider, J. et al. Proc. Natl. Acad. Sci. USA 101, 13204–13209 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Vale (University of California, San Francisco) for the loan of the dark-field condenser and Z. Bryant and S. Churchman for insightful commentary. A.R.D. is a Jane Coffin Childs Postdoctoral Fellow. J.A.S. is supported by grant GM33289 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A Spudich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of M5elc and M5cam (PDF 472 kb)

Supplementary Fig. 2

Sample trace showing alternating 53- and 21-nm steps (PDF 410 kb)

Supplementary Fig. 3

Step-size and dwell-time histograms (PDF 105 kb)

Supplementary Fig. 4

Sample axial and lateral displacements during the one-head-bound intermediate (PDF 140 kb)

Supplementary Fig. 5

Axial and lateral standard deviation histograms (PDF 455 kb)

Supplementary Fig. 6

Mathematical modeling of the one-head-bound state (PDF 94 kb)

Supplementary Fig. 7

Lateral displacement during the one-head-bound intermediate (PDF 144 kb)

Supplementary Fig. 8

M5elc free-head rebinding kinetics in the presence of 100 mM BDM (PDF 345 kb)

Supplementary Fig. 9

M5elc free-head rebinding kinetics in the presence of 50 mM free phosphate (PDF 113 kb)

Supplementary Video 1

M5elc labeled with a 40-nm gold particle walks on actin (MOV 546 kb)

Supplementary Methods (PDF 201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, A., Spudich, J. Dynamics of the unbound head during myosin V processive translocation. Nat Struct Mol Biol 14, 246–248 (2007). https://doi.org/10.1038/nsmb1206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing