Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of the Epstein-Barr virus major envelope glycoprotein

Abstract

Epstein-Barr virus (EBV) infection of B cells is associated with lymphoma and other human cancers. EBV infection is initiated by the binding of the viral envelope glycoprotein (gp350) to the cell surface receptor CR2. We determined the X-ray structure of the highly glycosylated gp350 and defined the CR2 binding site on gp350. Polyglycans shield all but one surface of the gp350 polypeptide, and we demonstrate that this glycan-free surface is the receptor-binding site. Deglycosylated gp350 bound CR2 similarly to the glycosylated form, suggesting that glycosylation is not important for receptor binding. Structure-guided mutagenesis of the glycan-free surface disrupted receptor binding as well as binding by a gp350 monoclonal antibody, a known inhibitor of virus-receptor interactions. These results provide structural information for developing drugs and vaccines to prevent infection by EBV and related viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The overall structure of gp350.
Figure 2: The various polyglycan chain conformations on the protein surface.
Figure 3: Protein surface features of glycosylated gp350 and its receptor, CR2.
Figure 4: The receptor-binding site on gp350.
Figure 5: Cell-based receptor-binding assay for gp350 mutants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Miller, R.F., Jones, E.L., Duddy, M.J. & Shahmanesh, M. Progressive intrathoracic lymphadenopathy: EBV associated non-Hodgkin's lymphoma. Sex. Transm. Infect. 78, 13–17 (2002).

    Article  CAS  Google Scholar 

  2. Serraino, D. et al. Infection with Epstein-Barr virus and cancer: an epidemiological review. J. Biol. Regul. Homeost. Agents 19, 63–70 (2005).

    CAS  PubMed  Google Scholar 

  3. Gandhi, M.K. Epstein-Barr virus-associated lymphomas. Expert Rev. Anti Infect. Ther. 4, 77–89 (2006).

    Article  CAS  Google Scholar 

  4. Young, L.S. & Rickinson, A.B. Epstein-Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768 (2004).

    Article  CAS  Google Scholar 

  5. Griffin, B.E. Epstein-Barr virus (EBV) and human disease: facts, opinions and problems. Mutat. Res. 462, 395–405 (2000).

    Article  CAS  Google Scholar 

  6. Fingeroth, J.D. et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 81, 4510–4514 (1984).

    Article  CAS  Google Scholar 

  7. Tanner, J., Weis, J., Fearon, D., Whang, Y. & Kieff, E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203–213 (1987).

    Article  CAS  Google Scholar 

  8. Ahearn, J.M., Hayward, S.D., Hickey, J.C. & Fearon, D.T. Epstein-Barr virus (EBV) infection of murine L cells expressing recombinant human EBV/C3d receptor. Proc. Natl. Acad. Sci. USA 85, 9307–9311 (1988).

    Article  CAS  Google Scholar 

  9. Molesworth, S.J., Lake, C.M., Borza, C.M., Turk, S.M. & Hutt-Fletcher, L.M. Epstein-Barr virus gH is essential for penetration of B cells but also plays a role in attachment of virus to epithelial cells. J. Virol. 74, 6324–6332 (2000).

    Article  CAS  Google Scholar 

  10. Mullen, M.M., Haan, K.M., Longnecker, R. & Jardetzky, T.S. Structure of the Epstein-Barr virus gp42 protein bound to the MHC class II receptor HLA-DR1. Mol. Cell 9, 375–385 (2002).

    Article  CAS  Google Scholar 

  11. Weis, J.J., Tedder, T.F. & Fearon, D.T. Identification of a 145,000 Mr membrane protein as the C3d receptor (CR2) of human B lymphocytes. Proc. Natl. Acad. Sci. USA 81, 881–885 (1984).

    Article  CAS  Google Scholar 

  12. Szakonyi, G. et al. Structure of complement receptor 2 in complex with its C3d ligand. Science 292, 1725–1728 (2001).

    Article  CAS  Google Scholar 

  13. Sarrias, M.R. et al. Kinetic analysis of the interactions of complement receptor 2 (CR2, CD21) with its ligands C3d, iC3b, and the EBV glycoprotein gp350/220. J. Immunol. 167, 1490–1499 (2001).

    Article  CAS  Google Scholar 

  14. Guthridge, J.M. et al. Epitope mapping using the X-ray crystallographic structure of complement receptor type 2 (CR2/CD21): identification of a highly inhibitory monoclonal antibody that directly recognizes the CR2–C3d interface. J. Immunol. 167, 5758–5766 (2001).

    Article  CAS  Google Scholar 

  15. Tanner, J., Whang, Y., Sample, J., Sears, A. & Kieff, E. Soluble gp350/220 and deletion mutant glycoproteins block Epstein-Barr virus adsorption to lymphocytes. J. Virol. 62, 4452–4464 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin, D.R., Yuryev, A., Kalli, K.R., Fearon, D.T. & Ahearn, J.M. Determination of the structural basis for selective binding of Epstein-Barr virus to human complement receptor type 2. J. Exp. Med. 174, 1299–1311 (1991).

    Article  CAS  Google Scholar 

  17. Lowell, C.A. et al. Mapping of the Epstein-Barr virus and C3dg binding sites to a common domain on complement receptor type 2. J. Exp. Med. 170, 1931–1946 (1989).

    Article  CAS  Google Scholar 

  18. Nemerow, G.R., Mullen, J.J., III, Dickson, P.W. & Cooper, N.R. Soluble recombinant CR2 (CD21) inhibits Epstein-Barr virus infection. J. Virol. 64, 1348–1352 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Hebell, T., Ahearn, J.M. & Fearon, D.T. Suppression of the immune response by a soluble complement receptor of B lymphocytes. Science 254, 102–105 (1991).

    Article  CAS  Google Scholar 

  20. Jackman, W.T., Mann, K.A., Hoffmann, H.J. & Spaete, R.R. Expression of Epstein-Barr virus gp350 as a single chain glycoprotein for an EBV subunit vaccine. Vaccine 17, 660–668 (1999).

    Article  CAS  Google Scholar 

  21. Emini, E.A., Schleif, W.A., Silberklang, M., Lehman, D. & Ellis, R.W. Vero cell-expressed Epstein-Barr virus (EBV) gp350/220 protects marmosets from EBV challenge. J. Med. Virol. 27, 120–123 (1989).

    Article  CAS  Google Scholar 

  22. Finerty, S. et al. Protective immunization against Epstein-Barr virus-induced disease in cottontop tamarins using the virus envelope glycoprotein gp340 produced from a bovine papillomavirus expression vector. J. Gen. Virol. 73, 449–453 (1992).

    Article  CAS  Google Scholar 

  23. Thorley-Lawson, D.A. & Geilinger, K. Monoclonal antibodies against the major glycoprotein (gp350/220) of Epstein-Barr virus neutralize infectivity. Proc. Natl. Acad. Sci. USA 77, 5307–5311 (1980).

    Article  CAS  Google Scholar 

  24. Metzler, W.J. et al. Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat. Struct. Biol. 4, 527–531 (1997).

    Article  CAS  Google Scholar 

  25. Hsu, T.A. et al. Differential N-glycan patterns of secreted and intracellular IgG produced in Trichoplusia ni cells. J. Biol. Chem. 272, 9062–9070 (1997).

    Article  CAS  Google Scholar 

  26. Hannan, J.P. et al. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d. J. Mol. Biol. 346, 845–858 (2005).

    Article  CAS  Google Scholar 

  27. Nagar, B., Jones, R.G., Diefenbach, R.J., Isenman, D.E. & Rini, J.M. X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science 280, 1277–1281 (1998).

    Article  CAS  Google Scholar 

  28. Prota, A.E., Sage, D.R., Stehle, T. & Fingeroth, J.D. The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding. Proc. Natl. Acad. Sci. USA 99, 10641–10646 (2002).

    Article  CAS  Google Scholar 

  29. Nemerow, G.R., Houghten, R.A., Moore, M.D. & Cooper, N.R. Identification of an epitope in the major envelope protein of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell 56, 369–377 (1989).

    Article  CAS  Google Scholar 

  30. Urquiza, M., Lopez, R., Patino, H., Rosas, J.E. & Patarroyo, M.E. Identification of three gp350/220 regions involved in Epstein-Barr virus invasion of host cells. J. Biol. Chem. 280, 35598–35605 (2005).

    Article  CAS  Google Scholar 

  31. Zhang, P.F. & Marcus-Sekura, C.J. Conformation-dependent recognition of baculovirus-expressed Epstein-Barr virus gp350 by a panel of monoclonal antibodies. J. Gen. Virol. 74, 2171–2179 (1993).

    Article  CAS  Google Scholar 

  32. Pither, R.J., Nolan, L., Tarlton, J., Walford, J. & Morgan, A.J. Distribution of epitopes within the amino acid sequence of the Epstein-Barr virus major envelope glycoprotein, gp340, recognized by hyperimmune rabbit sera. J. Gen. Virol. 73, 1409–1415 (1992).

    Article  CAS  Google Scholar 

  33. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  Google Scholar 

  34. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  35. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–493 (1997).

    Article  CAS  Google Scholar 

  36. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by US National Institutes of Health grants R01AI050096 to X.S.C. and R0-1 R01CA053615 to V.M.H. We thank staff scientists at the 19ID beamline at the Structural Biology Center in Argonne National Laboratory and at Advanced Light Source beamlines BL8.2.1 and BL 8.2.2 for assistance in data collection.

Author information

Authors and Affiliations

Authors

Contributions

G.S. purified the proteins, grew the crystals, collected data, solved the phases and built the initial model. M.G.K. improved the phases and refined the model. J.P.H. and K.A.Y. made the mutants and conducted the binding studies. R.Z.M. generated antibodies for cloning and expression of gp350. R.A. helped with the initial protein purification. V.M.H. participated in the experimental design and data analysis. X.S.C. supervised the entire project.

Corresponding author

Correspondence to Xiaojiang S Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szakonyi, G., Klein, M., Hannan, J. et al. Structure of the Epstein-Barr virus major envelope glycoprotein. Nat Struct Mol Biol 13, 996–1001 (2006). https://doi.org/10.1038/nsmb1161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing