Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure and mechanism of human lysine-specific demethylase-1

Abstract

The reversible methylation of specific lysine residues in histone tails is crucial in epigenetic gene regulation. LSD1, the first known lysine-specific demethylase, selectively removes monomethyl and dimethyl, but not trimethyl modifications of Lys4 or Lys9 of histone-3. Here, we present the crystal structure of LSD1 at 2.9-Å resolution. LSD1 forms a highly asymmetric, closely packed domain structure from which a long helical 'tower' domain protrudes. The active site cavity is spacious enough to accommodate several residues of the histone tail substrate, but does not appear capable of recognizing the different methylation states of the substrate lysine. This supports the hypothesis that trimethylated lysine is chemically rather than sterically discriminated. We present a biochemical analysis of LSD1 mutants that identifies crucial residues in the active site cavity and shows the importance of the SWIRM and tower domains for catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of human LSD1.
Figure 2: Structure of the SWIRM domain of LSD1.
Figure 3: Structure of the oxidase domain and active site cavity of LSD1.
Figure 4: Allosteric regulation of LSD1.
Figure 5: Initial velocities of LSD1 mutants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260 (1997).

    CAS  PubMed  Google Scholar 

  2. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  3. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nat. Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Tsukada, Y. et al. Histone demethylation by a family of JmjC domain-containing proteins. Nature 439, 811–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, M.G., Wynder, C., Cooch, N. & Shiekhattar, R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 437, 432–435 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Shi, Y.J. et al. Regulation of LSD1 histone demethylase activity by its associated factors. Mol. Cell 19, 857–864 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wysocka, J., Milne, T.A. & Allis, C.D. Taking LSD1 to a new high. Cell 122, 654–658 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Kubicek, S. & Jenuwein, T. A crack in histone lysine methylation. Cell 119, 903–906 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Aravind, L. & Iyer, L.M. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome Biol. 3, RESEARCH0039 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Forneris, F., Binda, C., Vanoni, M.A., Mattevi, A. & Battaglioli, E. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process. FEBS Lett. 579, 2203–2207 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Forneris, F., Binda, C., Vanoni, M.A., Battaglioli, E. & Mattevi, A. Human histone demethylase LSD1 reads the histone code. J. Biol. Chem. 280, 41360–41365 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Qian, C. et al. Structure and chromosomal DNA binding of the SWIRM domain. Nat. Struct. Mol. Biol. 12, 1078–1085 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Da, G. et al. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes. Proc. Natl. Acad. Sci. USA 103, 2057–2062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Binda, C., Angelini, R., Federico, R., Ascenzi, P. & Mattevi, A. Structural bases for inhibitor binding and catalysis in polyamine oxidase. Biochemistry 40, 2766–2776 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Bannister, A.J. & Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Fraaije, M.W. & Mattevi, A. Flavoenzymes: diverse catalysts with recurrent features. Trends Biochem. Sci. 25, 126–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hoelz, A., Nairn, A.C. & Kuriyan, J. Crystal structure of a tetradecameric assembly of the association domain of Ca2+/calmodulin-dependent kinase II. Mol. Cell 11, 1241–1251 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D Biol. Crystallogr, 50, 760–763, (1994).

  22. Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O. & Darst, S.A. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285–1290 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. La Fortelle, E.D. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement in the MIR and MAD methods. Methods Enzymol. 276, 476–494 (1997).

    Google Scholar 

  24. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  25. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  26. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  27. Sanner, M.F., Olson, A.J. & Spehner, J.C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers 38, 305–320 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Jeanmougin, F., Thompson, J.D., Guoy, M., Higgins, D.G. & Gibson, T.J. Multiple sequence alignment with Clustal X. Trends Biochem. 23, 403–405 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Kazusa DNA Research Institute for the complementary DNA clone of human LSD1, C. Ralston for invaluable support during data collection at the Advanced Light Source, K. Heyman for technical support, A. Patke for discussions, S. Lawrie and S. Etherton for help with editing the manuscript and members of the Blobel laboratory for discussions and comments on the manuscript. N-terminal protein sequencing and peptide synthesis were performed by the Protein Center of the Rockefeller University, and multiangle light-scattering analysis was carried out by the Yale Proteomics Facility. A.H. was supported by a grant from the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Contributions

P.S. and A.H. designed and performed experiments; P.S., G.B. and A.H. analyzed and interpreted data; A.H. prepared the figures and the manuscript.

Note: Supplementary information is available on the Nature Structural & Molecular Biology website.

Corresponding author

Correspondence to André Hoelz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sequence alignment of LSD1 homologs (PDF 219 kb)

Supplementary Fig. 2

Electron density maps (PDF 5025 kb)

Supplementary Fig. 3

The SWIRM domain of LSD1 (PDF 251 kb)

Supplementary Fig. 4

Trimethylated H3-K4 peptide acts as a competitive inhibitor of LSD1 activity (PDF 50 kb)

Supplementary Table 1

Biochemical analysis of LSD1 mutants (PDF 477 kb)

Supplementary Table 2

Crystallographic analysis (PDF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavropoulos, P., Blobel, G. & Hoelz, A. Crystal structure and mechanism of human lysine-specific demethylase-1. Nat Struct Mol Biol 13, 626–632 (2006). https://doi.org/10.1038/nsmb1113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing