Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles

Abstract

LINE-1 retrotransposons (L1s) constitute 17% of human DNA, and their activity continues to affect genome evolution. Retrotransposition-competent human L1s encode two proteins required for their mobility (ORF1p and ORF2p); however, biochemical activities associated with ORF2p have been difficult to detect in cells. Here, we show for the first time the colocalization of L1 RNA, ORF1p and ORF2p to a putative ribonucleoprotein retrotransposition intermediate. We further demonstrate that ORF2p preferentially uses its encoding RNA as a template for reverse transcription. Thus, our data provide the first biochemical evidence supporting the cis-preferential action of the L1 reverse transcriptase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LEAP.
Figure 2: Schematic of sequenced LEAP and M-MLV RT-PCR products.
Figure 3: Effects of LEAP primer sequence on RT initiation.
Figure 4: Trans-LEAP.

Similar content being viewed by others

References

  1. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  2. Moran, J.V. & Gilbert, N. Mammalian LINE-1 retrotransposons and related elements. in Mobile DNA II (eds. Craig, N., Craggie, R., Gellert, M. & Lambowitz, A.) 836–869 (ASM Press, Washington, DC, 2002).

  3. Sassaman, D.M. et al. Many human L1 elements are capable of retrotransposition. Nat. Genet. 16, 37–43 (1997).

    Article  CAS  Google Scholar 

  4. Brouha, B. et al. Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am. J. Hum. Genet. 71, 327–336 (2002).

    Article  CAS  Google Scholar 

  5. Scott, A.F. et al. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1, 113–125 (1987).

    Article  CAS  Google Scholar 

  6. Dombroski, B.A., Mathias, S.L., Nanthakumar, E., Scott, A.F. & Kazazian, H.H., Jr. Isolation of an active human transposable element. Science 254, 1805–1808 (1991).

    Article  CAS  Google Scholar 

  7. Hohjoh, H. & Singer, M.F. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J. 15, 630–639 (1996).

    Article  CAS  Google Scholar 

  8. Feng, Q., Moran, J.V., Kazazian, H.H., Jr. & Boeke, J.D. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905–916 (1996).

    Article  CAS  Google Scholar 

  9. Mathias, S.L., Scott, A.F., Kazazian, H.H., Jr., Boeke, J.D. & Gabriel, A. Reverse transcriptase encoded by a human transposable element. Science 254, 1808–1810 (1991).

    Article  CAS  Google Scholar 

  10. Moran, J.V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996).

    Article  CAS  Google Scholar 

  11. Cost, G.J., Feng, Q., Jacquier, A. & Boeke, J.D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002).

    Article  CAS  Google Scholar 

  12. Luan, D.D., Korman, M.H., Jakubczak, J.L. & Eickbush, T.H. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72, 595–605 (1993).

    Article  CAS  Google Scholar 

  13. Kaplan, N., Darden, T. & Langley, C.H. Evolution and extinction of transposable elements in Mendelian populations. Genetics 109, 459–480 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hardies, S.C., Martin, S.L., Voliva, C.F., Hutchison, C.A., III & Edgell, M.H. An analysis of replacement and synonymous changes in the rodent L1 repeat family. Mol. Biol. Evol. 3, 109–125 (1986).

    CAS  PubMed  Google Scholar 

  15. Esnault, C., Maestre, J. & Heidmann, T. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24, 363–367 (2000).

    Article  CAS  Google Scholar 

  16. Wei, W. et al. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21, 1429–1439 (2001).

    Article  CAS  Google Scholar 

  17. Martin, S.L. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol. Cell. Biol. 11, 4804–4807 (1991).

    Article  CAS  Google Scholar 

  18. Ergun, S. et al. Cell type-specific expression of LINE-1 open reading frames 1 and 2 in fetal and adult human tissues. J. Biol. Chem. 279, 27753–27763 (2004).

    Article  Google Scholar 

  19. Goodier, J.L., Ostertag, E.M., Engleka, K.A., Seleme, M.C. & Kazazian, H.H., Jr. A potential role for the nucleolus in L1 retrotransposition. Hum. Mol. Genet. 13, 1041–1048 (2004).

    Article  CAS  Google Scholar 

  20. Kulpa, D.A. & Moran, J.V. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum. Mol. Genet. 14, 3237–3248 (2005).

    Article  CAS  Google Scholar 

  21. Martin, S.L. et al. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J. Mol. Biol. 348, 549–561 (2005).

    Article  CAS  Google Scholar 

  22. Roberts, J.D. et al. Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro. Mol. Cell. Biol. 9, 469–476 (1989).

    Article  CAS  Google Scholar 

  23. Luan, D.D. & Eickbush, T.H. RNA template requirements for target DNA-primed reverse transcription by the R2 retrotransposable element. Mol. Cell. Biol. 15, 3882–3891 (1995).

    Article  CAS  Google Scholar 

  24. Chambeyron, S., Bucheton, A. & Busseau, I. Tandem UAA repeats at the 3′-end of the transcript are essential for the precise initiation of reverse transcription of the I factor in Drosophila melanogaster. J. Biol. Chem. 277, 17877–17882 (2002).

    Article  CAS  Google Scholar 

  25. Zhang, Z., Harrison, P.M., Liu, Y. & Gerstein, M. Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res. 13, 2541–2558 (2003).

    Article  CAS  Google Scholar 

  26. Piskareva, O. & Schmatchenko, V. DNA polymerization by the reverse transcriptase of the human L1 retrotransposon on its own template in vitro. FEBS Lett. 580, 661–668 (2006).

    Article  CAS  Google Scholar 

  27. Martin, S.L. & Bushman, F.D. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21, 467–475 (2001).

    Article  CAS  Google Scholar 

  28. Morrish, T.A. et al. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat. Genet. 31, 159–165 (2002).

    Article  CAS  Google Scholar 

  29. Gilbert, N., Lutz, S., Morrish, T.A. & Moran, J.V. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25, 7780–7795 (2005).

    Article  CAS  Google Scholar 

  30. Gilbert, N., Lutz-Prigge, S. & Moran, J.V. Genomic deletions created upon LINE-1 retrotransposition. Cell 110, 315–325 (2002).

    Article  CAS  Google Scholar 

  31. Symer, B.E. et al. Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110, 277–280 (2002).

    Article  Google Scholar 

  32. Bibillo, A. & Eickbush, T.H. End-to-end template jumping by the reverse transcriptase encoded by the R2 retrotransposon. J. Biol. Chem. 279, 14945–14953 (2004).

    Article  CAS  Google Scholar 

  33. Dombroski, B.A., Scott, A.F. & Kazazian, H.H., Jr. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc. Natl. Acad. Sci. USA 90, 6513–6517 (1993).

    Article  CAS  Google Scholar 

  34. Wei, W., Morrish, T.A., Alisch, R.S. & Moran, J.V. A transient assay reveals that cultured human cells can accommodate multiple LINE-1 retrotransposition events. Anal. Biochem. 284, 435–438 (2000).

    Article  CAS  Google Scholar 

  35. Piskareva, O., Denmukhametova, S. & Schmatchenko, V. Functional reverse transcriptase encoded by the human LINE-1 from baculovirus-infected insect cells. Protein Expr. Purif. 28, 125–130 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the University of Michigan Sequencing Core for help with sequencing and S. King and A. Telesnitsky for help with quantitative PCR experiments. We also thank M. Imperiale, D. Friedman, J.L. Garcia-Perez, H. Chong and A. Hulme for comments and for critically reading the manuscript. The work was supported in part by a grant from the US National Institutes of Health (GM60518). D.A.K. was supported in part by a US National Institutes of Health training grant (GM07544). The University of Michigan Cancer Center helped defray some of the DNA-sequencing costs.

Author information

Authors and Affiliations

Authors

Contributions

D.A.K. is the leading author. She contributed to the concept, designed and performed the experiments, analyzed the data and wrote the manuscript. J.V.M. is the senior author. He contributed to the concept, analyzed the data, revised the manuscript and provided financial support.

Corresponding authors

Correspondence to Deanna A Kulpa or John V Moran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

LEAP assay biophysical characterization (PDF 106 kb)

Supplementary Fig. 2

Effect of template-primer competition on LEAP activity (PDF 78 kb)

Supplementary Table 1

Sequences of oligonucleotide primers (PDF 18 kb)

Supplementary Methods (PDF 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulpa, D., Moran, J. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13, 655–660 (2006). https://doi.org/10.1038/nsmb1107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1107

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing