Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cbl promotes clustering of endocytic adaptor proteins

Abstract

The ubiquitin ligases c-Cbl and Cbl-b play a crucial role in receptor downregulation by mediating multiple monoubiquitination of receptors and promoting their sorting for lysosomal degradation. Their function is modulated through interactions with regulatory proteins including CIN85 and PIX, which recognize a proline-arginine motif in Cbl and thus promote or inhibit receptor endocytosis. We report the structures of SH3 domains of CIN85 and β-PIX in complex with a proline-arginine peptide from Cbl-b. Both structures reveal a heterotrimeric complex containing two SH3 domains held together by a single peptide. Trimerization also occurs in solution and is facilitated by the pseudo-symmetrical peptide sequence. Moreover, ternary complexes of CIN85 and Cbl are formed in vivo and are important for the ability of Cbl to promote epidermal growth factor receptor (EGFR) downregulation. These results provide molecular explanations for a novel mechanism by which Cbl controls receptor downregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of β-PIX and CIN85 and sequence alignment of SH3 domains.
Figure 2: Overall structure of the β-PIX–Cbl-b and CIN85A–Cbl-b heterotrimeric complexes and details of the protein-peptide contacts.
Figure 3: Isothermal titration calorimetry measurements of complex formation.
Figure 4: c-Cbl and Cbl-b mediate ternary complex formation with CIN85 in vivo.
Figure 5: Comparison of the ternary β-PIX–Cbl-b complex with a SuperSH3 domain.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Schlessinger, J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002).

    Article  CAS  Google Scholar 

  2. Dikic, I. & Giordano, S. Negative receptor signaling. Curr. Opin. Cell Biol. 15, 128–135 (2003).

    Article  CAS  Google Scholar 

  3. Bonifacino, J.S. & Traub, L.M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72, 395–447 (2003).

    Article  CAS  Google Scholar 

  4. Szymkiewicz, I., Shupliakov, O. & Dikic, I. Cargo- and compartment-selective endocytic scaffold proteins. Biochem. J. 383, 1–11 (2004).

    Article  CAS  Google Scholar 

  5. Sigismund, S. et al. Clathrin-independent endocytosis of ubiquitinated cargos. Proc. Natl. Acad. Sci. USA 102, 2760–2765 (2005).

    Article  CAS  Google Scholar 

  6. Le Roy, C. & Wrana, J.L. Clathrin- and non-clathrin-mediated endocytic regulation of cell signaling. Nat. Rev. Mol. Cell Biol. 6, 112–126 (2005).

    Article  CAS  Google Scholar 

  7. Haglund, K., Di Fiore, P.P. & Dikic, I. Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem. Sci. 28, 598–603 (2003).

    Article  CAS  Google Scholar 

  8. Haglund, K. et al. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5, 461–466 (2003).

    Article  CAS  Google Scholar 

  9. Mosesson, Y. et al. Endocytosis of receptor tyrosine kinases is driven by monoubiquitylation, not polyubiquitylation. J. Biol. Chem. 278, 21323–21326 (2003).

    Article  CAS  Google Scholar 

  10. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W.Y. & Dikic, I. Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  Google Scholar 

  11. Petrelli, A. et al. The endophilin–CIN85–Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416, 187–190 (2002).

    Article  CAS  Google Scholar 

  12. Szymkiewicz, I. et al. CIN85 participates in Cbl-b-mediated down-regulation of receptor tyrosine kinases. J. Biol. Chem. 277, 39666–39672 (2002).

    Article  CAS  Google Scholar 

  13. Kowanetz, K. et al. Identification of a novel proline-arginine motif involved in CIN85-dependent clustering of Cbl and down-regulation of epidermal growth factor receptors. J. Biol. Chem. 278, 39735–39746 (2003).

    Article  CAS  Google Scholar 

  14. Kurakin, A.V., Wu, S. & Bredesen, D.E. Atypical recognition consensus of CIN85/SETA/Ruk SH3 domains revealed by target-assisted iterative screening. J. Biol. Chem. 278, 34102–34109 (2003).

    Article  CAS  Google Scholar 

  15. Manser, E. et al. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1, 183–192 (1998).

    Article  CAS  Google Scholar 

  16. Bagrodia, S., Taylor, S.J., Jordon, K.A., Van Aelst, L. & Cerione, R.A. A novel regulator of p21-activated kinases. J. Biol. Chem. 273, 23633–23636 (1998).

    Article  CAS  Google Scholar 

  17. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  Google Scholar 

  18. Flanders, J.A. et al. The Cbl proteins are binding partners for the Cool/Pix family of p21-activated kinase-binding proteins. FEBS Lett. 550, 119–123 (2003).

    Article  CAS  Google Scholar 

  19. Wu, W.J., Tu, S. & Cerione, R.A. Activated Cdc42 sequesters c-Cbl and prevents EGF receptor degradation. Cell 114, 715–725 (2003).

    Article  CAS  Google Scholar 

  20. Mayer, B.J. SH3 domains: complexity in moderation. J. Cell Sci. 114, 1253–1263 (2001).

    CAS  Google Scholar 

  21. Dalgarno, D.C., Botfield, M.C. & Rickles, R.J. SH3 domains and drug design: ligands, structure, and biological function. Biopolymers 43, 383–400 (1997).

    Article  CAS  Google Scholar 

  22. Kuriyan, J. & Cowburn, D. Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26, 259–288 (1997).

    Article  CAS  Google Scholar 

  23. Musacchio, A. How SH3 domains recognize proline. Adv. Protein Chem. 61, 211–268 (2002).

    Article  Google Scholar 

  24. Zarrinpar, A., Bhattacharyya, R.P. & Lim, W.A. The structure and function of proline recognition domains. Sci. STKE 2003, RE8 (2003).

    PubMed  Google Scholar 

  25. Feng, S., Chen, J.K., Yu, H., Simon, J.A. & Schreiber, S.L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247 (1994).

    Article  CAS  Google Scholar 

  26. Lim, W.A., Richards, F.M. & Fox, R.O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379 (1994).

    Article  CAS  Google Scholar 

  27. Groemping, Y., Lapouge, K., Smerdon, S.J. & Rittinger, K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113, 343–355 (2003).

    Article  CAS  Google Scholar 

  28. Bartkiewicz, M., Houghton, A. & Baron, R. Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. A role in c-Cbl's tyrosine phosphorylation and its association with epidermal growth factor receptor. J. Biol. Chem. 274, 30887–30895 (1999).

    Article  CAS  Google Scholar 

  29. Dikic, I. Mechanisms controlling EGF receptor endocytosis and degradation. Biochem. Soc. Trans. 31, 1178–1181 (2003).

    Article  CAS  Google Scholar 

  30. Kowanetz, K. et al. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol. Biol. Cell 15, 3155–3166 (2004).

    Article  CAS  Google Scholar 

  31. Watanabe, S. et al. Characterization of the CIN85 adaptor protein and identification of components involved in CIN85 complexes. Biochem. Biophys. Res. Commun. 278, 167–174 (2000).

    Article  CAS  Google Scholar 

  32. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  Google Scholar 

  33. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  34. Vagin, A. & Teplyakov, A. An approach to multi-copy search in molecular replacement. Acta Crystallogr. D 56, 1622–1624 (2000).

    Article  CAS  Google Scholar 

  35. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  36. Perrakis, A., Harkiolaki, M., Wilson, K.S. & Lamzin, V.S. ARP/wARP and molecular replacement. Acta Crystallogr. D 57, 1445–1450 (2001).

    Article  CAS  Google Scholar 

  37. Turk, D. Further Development of a Program for Molecular Graphics and Electron Density Manipulation and Its Use in Different Protein Structure Determinations. PhD Thesis, Technische Universitaet (1992).

    Google Scholar 

  38. Laskowski, R.A., Moss, D.S. & Thornton, J.M. Main-chain bond lengths and bond angles in protein structures. J. Mol. Biol. 231, 1049–1067 (1993).

    Article  CAS  Google Scholar 

  39. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  40. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. McRee, D.E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  43. Abramoff, M.D., Magelhaes, P.J. & Ram, S.J. Image processing with ImageJ. Biophotonics International 11, 36–42 (2004).

    Google Scholar 

Download references

Acknowledgements

The β-PIX-SH3 plasmid was a gift of E. Manser (Institute of Molecular and Cell Biology, Singapore). We are grateful to S. Howell and L. Haire (National Institute for Medical Research, London) for mass spectrometry; P. Fletcher (National Institute for Medical Research, London) and W. Mawby (University of Bristol, Bristol, UK) for peptide synthesis; J. Nicholson and R. Kehoe at Daresbury Laboratory for beamline assistance; A. Albert for help in data collection and M. Ortiz for help with CIN85A structure refinement. Research on CIN85 was supported by grant SAF2003-03860 of the Ministerio de Ciencia y Tecnología, Spain, and N.C. received a fellowship from the Ramón Areces Foundation. D.J. and K.R. are funded by the Medical Research Council, UK. Work by Y.L.D, D.H. and I.D. is supported by grants from Deutsche Forschungsgemeinschaft, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan Dikic, Katrin Rittinger or Jerónimo Bravo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jozic, D., Cárdenes, N., Deribe, Y. et al. Cbl promotes clustering of endocytic adaptor proteins. Nat Struct Mol Biol 12, 972–979 (2005). https://doi.org/10.1038/nsmb1000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1000

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing