Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states

Abstract

TRPML3 channels are mainly localized to endolysosomes and play a critical role in the endocytic pathway. Their dysfunction causes deafness and pigmentation defects in mice. TRPML3 activity is inhibited by low endolysosomal pH. Here we present cryo-electron microscopy (cryo-EM) structures of human TRPML3 in the closed, agonist-activated, and low-pH-inhibited states, with resolutions of 4.06, 3.62, and 4.65 Å, respectively. The agonist ML-SA1 lodges between S5 and S6 and opens an S6 gate. A polycystin-mucolipin domain (PMD) forms a luminal cap. S1 extends into this cap, forming a 'gating rod' that connects directly to a luminal pore loop, which undergoes dramatic conformational changes in response to low pH. S2 extends intracellularly and interacts with several intracellular regions to form a 'gating knob'. These unique structural features, combined with the results of electrophysiological studies, indicate a new mechanism by which luminal pH and other physiological modulators such as PIP2 regulate TRPML3 by changing S1 and S2 conformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of apo and agonist-bound TRPML3.
Figure 2: The ML-SA1-binding site.
Figure 3: Unique structural features of TRPML3.
Figure 4: The pore and gate.
Figure 5: Low-pH-induced current inhibition and conformational change in the luminal pore loop.
Figure 6: Low-pH-induced conformational changes in the PMD and TMD.
Figure 7: A model of two modes of low-pH inhibition of TRPML3.

Similar content being viewed by others

Accession codes

Primary accessions

Electron Microscopy Data Bank

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Di Fiore, P.P. & von Zastrow, M. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 6, a016865 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu, H., Martinoia, E. & Szabo, I. Organellar channels and transporters. Cell Calcium 58, 1–10 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grimm, C., Butz, E., Chen, C.-C., Wahl-Schott, C. & Biel, M. From mucolipidosis type IV to Ebola: TRPML and two-pore channels at the crossroads of endo-lysosomal trafficking and disease. Cell Calcium 67, 148–155 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Venkatachalam, K., Wong, C.O. & Zhu, M.X. The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58, 48–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, H. & Ren, D. Lysosomal physiology. Annu. Rev. Physiol. 77, 57–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grimm, C., Barthmes, M. & Wahl-Schott, C. TRPML3. Handb. Exp. Pharmacol. 222, 659–674 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Noben-Trauth, K. The TRPML3 channel: from gene to function. Adv. Exp. Med. Biol. 704, 229–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Grimm, C., Hassan, S., Wahl-Schott, C. & Biel, M. Role of TRPML and two-pore channels in endolysosomal cation homeostasis. J. Pharmacol. Exp. Ther. 342, 236–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Li, M. et al. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 24, 205–213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114–122 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Shen, P.S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wilkes, M. et al. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 24, 123–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Kiselyov, K. et al. TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J. Biol. Chem. 280, 43218–43223 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Dong, X.P. et al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455, 992–996 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dong, X.P. et al. Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J. Biol. Chem. 284, 32040–32052 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong, X.P. et al. PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1, 38 (2010).

    Article  PubMed  Google Scholar 

  17. Dong, X.P., Wang, X. & Xu, H. TRP channels of intracellular membranes. J. Neurochem. 113, 313–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, X. et al. A molecular mechanism to regulate lysosome motility for lysosome positioning and tubulation. Nat. Cell Biol. 18, 404–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, W. et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc. Natl. Acad. Sci. USA 112, E1373–E1381 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng, X. et al. The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat. Med. 20, 1187–1192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miedel, M.T. et al. Membrane traffic and turnover in TRP-ML1-deficient cells: a revised model for mucolipidosis type IV pathogenesis. J. Exp. Med. 205, 1477–1490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Samie, M. et al. A TRP channel in the lysosome regulates large particle phagocytosis via focal exocytosis. Dev. Cell 26, 511–524 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, X. et al. MCOLN1 is a ROS sensor in lysosomes that regulates autophagy. Nat. Commun. 7, 12109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. LaPlante, J.M. et al. Lysosomal exocytosis is impaired in mucolipidosis type IV. Mol. Genet. Metab. 89, 339–348 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Venkatachalam, K. et al. Motor deficit in a Drosophila model of mucolipidosis type IV due to defective clearance of apoptotic cells. Cell 135, 838–851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vergarajauregui, S., Connelly, P.S., Daniels, M.P. & Puertollano, R. Autophagic dysfunction in mucolipidosis type IV patients. Hum. Mol. Genet. 17, 2723–2737 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Garrity, A.G. et al. The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. eLife 5, e15887 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sahoo, N. et al. Gastric acid secretion from parietal cells is mediated by a Ca2+ efflux channel in the tubulovesicle. Dev. Cell 41, 262–273 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Bargal, R. et al. Identification of the gene causing mucolipidosis type IV. Nat. Genet. 26, 118–123 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Bassi, M.T. et al. Cloning of the gene encoding a novel integral membrane protein, mucolipidin, and identification of the two major founder mutations causing mucolipidosis type IV. Am. J. Hum. Genet. 67, 1110–1120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weitz, R. & Kohn, G. Clinical spectrum of mucolipidosis type IV. Pediatrics 81, 602–603 (1988).

    CAS  PubMed  Google Scholar 

  33. Bach, G. Mucolipidosis type IV. Mol. Genet. Metab. 73, 197–203 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Wakabayashi, K., Gustafson, A.M., Sidransky, E. & Goldin, E. Mucolipidosis type IV: an update. Mol. Genet. Metab. 104, 206–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Palma, F. et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA 99, 14994–14999 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grimm, C. et al. A helix-breaking mutation in TRPML3 leads to constitutive activity underlying deafness in the varitint-waddler mouse. Proc. Natl. Acad. Sci. USA 104, 19583–19588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, H.J. et al. Gain-of-function mutation in TRPML3 causes the mouse varitint-waddler phenotype. J. Biol. Chem. 282, 36138–36142 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Nagata, K. et al. The varitint-waddler (Va) deafness mutation in TRPML3 generates constitutive, inward rectifying currents and causes cell degeneration. Proc. Natl. Acad. Sci. USA 105, 353–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Xu, H., Delling, M., Li, L., Dong, X. & Clapham, D.E. Activating mutation in a mucolipin transient receptor potential channel leads to melanocyte loss in varitint-waddler mice. Proc. Natl. Acad. Sci. USA 104, 18321–18326 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stauber, T. & Jentsch, T.J. Chloride in vesicular trafficking and function. Annu. Rev. Physiol. 75, 453–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Kiselyov, K.K., Ahuja, M., Rybalchenko, V., Patel, S. & Muallem, S. The intracellular Ca2+ channels of membrane traffic. Channels (Austin) 6, 344–351 (2012).

    Article  CAS  Google Scholar 

  42. Patel, S. & Cai, X. Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium 57, 222–230 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Appelqvist, H., Wäster, P., Kågedal, K. & Öllinger, K. The lysosome: from waste bag to potential therapeutic target. J. Mol. Cell Biol. 5, 214–226 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, X., Li, X. & Xu, H. Phosphoinositide isoforms determine compartment-specific ion channel activity. Proc. Natl. Acad. Sci. USA 109, 11384–11389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Raychowdhury, M.K. et al. Molecular pathophysiology of mucolipidosis type IV: pH dysregulation of the mucolipin-1 cation channel. Hum. Mol. Genet. 13, 617–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Cantiello, H.F. et al. Cation channel activity of mucolipin-1: the effect of calcium. Pflugers Arch. 451, 304–312 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Kim, H.J. et al. A novel mode of TRPML3 regulation by extracytosolic pH absent in the varitint-waddler phenotype. EMBO J. 27, 1197–1205 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grimm, C., Jörs, S., Guo, Z., Obukhov, A.G. & Heller, S. Constitutive activity of TRPML2 and TRPML3 channels versus activation by low extracellular sodium and small molecules. J. Biol. Chem. 287, 22701–22708 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, X. et al. TPC proteins are phosphoinositide- activated sodium-selective ion channels in endosomes and lysosomes. Cell 151, 372–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miao, Y., Li, G., Zhang, X., Xu, H. & Abraham, S.N. A TRP channel senses lysosome neutralization by pathogens to trigger their expulsion. Cell 161, 1306–1319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grimm, C. et al. Small molecule activators of TRPML3. Chem. Biol. 17, 135–148 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shen, D. et al. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3, 731 (2012).

    Article  PubMed  Google Scholar 

  54. Feng, X., Xiong, J., Lu, Y., Xia, X. & Zhu, M.X. Differential mechanisms of action of the mucolipin synthetic agonist, ML-SA1, on insect TRPML and mammalian TRPML1. Cell Calcium 56, 446–456 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, S., Li, N., Zeng, W., Gao, N. & Yang, M. Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell http://dx.doi.org/10.1007/s13238-017-0476-5 (2017).

  56. Kim, H.J., Yamaguchi, S., Li, Q., So, I. & Muallem, S. Properties of the TRPML3 channel pore and its stable expansion by the varitint-waddler-causing mutation. J. Biol. Chem. 285, 16513–16520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Biffi, A. Gene therapy for lysosomal storage disorders: a good start. Hum. Mol. Genet. 25, R65–R75 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Zheng, S.Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mindell, J.A. & Grigorieff, N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003).

    Article  PubMed  Google Scholar 

  61. Li, M. et al. Structure of a eukaryotic cyclic-nucleotide-gated channel. Nature 542, 60–65 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bharat, T.A., Russo, C.J., Löwe, J., Passmore, L.A. & Scheres, S.H. Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23, 1743–1753 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kucukelbir, A., Sigworth, F.J. & Tagare, H.D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  PubMed  Google Scholar 

  64. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. & Sansom, M.S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (grant 2014CB910301 to J.Y.), the National Institutes of Health (grant R01GM085234 to J.Y.), the National Natural Science Foundation of China (grant 31370821 to J.Y.; grant 31570730 to X.L.), the National Key Research and Development Program (grants 2016YFA0501102 and 2016YFA0501902 to X.L.), the Top Talents Program of Yunnan Province (grant 2011HA012 to J.Y.), the High-level Overseas Talents of Yunnan Province (J.Y.), the China Youth 1000-Talent Program of the State Council of China (X.L.), Beijing Advanced Innovation Center for Structural Biology (X.L.), and the Tsinghua-Peking Joint Center for Life Sciences (X.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.L. and J.Y. conceived and initiated the project. X.Z., M.L., D.S., Q.J., H.L., X.L., and J.Y. designed the experiments, analyzed the results, and wrote the manuscript. M.L. performed all molecular biology and biochemical experiments and built the atomic models. X.Z. and X.L. performed all cryo-EM experiments, including data acquisition and processing. D.S., Q.J., and H.L. performed electrophysiology experiments. All authors contributed to manuscript discussion, preparation, and editing.

Corresponding authors

Correspondence to Xueming Li or Jian Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Amino acid sequence alignment of human TRPML subunits.

Secondary structural elements are marked according to the pH 7.4 ML-SA1-bound TRPML3 structure. Green and yellow highlight identical and similar amino acids, respectively. The ion selectivity filter is boxed in red. The luminal pore-loop is boxed in blue, with the luminal pore-loop aspartates marked by red triangles. Red and green circles mark amino acids involved in binding PI(4,5)P2 and PI(3,5)P2, respectively. H283 is indicated by a red star. Orange circles mark amino acids involved in binding ML-SA1. Yellow star marks A419.

Supplementary Figure 2 Single-particle cryo-EM analysis of apo-TRPML3 at pH 7.4.

(a) A representative motion-corrected micrograph. Typical particles are marked with orange boxes. (b) Fourier power spectrum of the micrograph shown in a. (c) Gallery of typical two-dimensional class averages. (d) Flow chart of cryo-EM data processing. (e) Euler angle distribution of all particles used in the final map reconstruction. Each orientation is represented by a cylinder, for which both the height and color (from blue to red) are proportional to the number of particles for that specific direction. (f) Local resolution of the cryo-density map. (g) The gold-standard FSC curve of the final reconstruction (black) and the FSC curve between the final reconstruction and the map calculated from the atom model (blue). (h) Model validation. Blue, model versus the summed map. Black, model versus half 1 map (called ‘work’, used for model refinement). Red, model versus half 2 map (called ‘free’, not used for model refinement).

Supplementary Figure 3 Single-particle cryo-EM analysis of ML-SA1-bound TRPML3 at pH 7.4.

(a) A representative motion-corrected micrograph. Typical particles are marked with orange boxes. (b) Fourier power spectrum of the micrograph shown in a. (c) Gallery of typical two-dimensional class averages. (d) Flow chart of cryo-EM data processing. (e) Euler angle distribution of all particles used in the final map reconstruction. Each orientation is represented by a cylinder, for which both the height and color (from blue to red) are proportional to the number of particles for that specific direction. (f) Local resolution of the cryo-density map. (g) The FSC curve of the final reconstruction (black) and the FSC curve between the final reconstruction and the map calculated from the atom model (blue). (h) Model validation. Blue, model versus the summed map. Black, model versus half 1 map (called ‘work’, used for model refinement). Red, model versus half 2 map (called ‘free’, not used for model refinement).

Supplementary Figure 4 Single-particle cryo-EM analysis of apo-TRPML3 at pH 4.8.

(a) A representative motion-corrected micrograph. Typical particles are marked with orange boxes. (b) Fourier power spectrum of the micrograph shown in a. (c) Gallery of typical two-dimensional class averages. (d) Flow chart of cryo-EM data processing. (e) Euler angle distribution of all particles used in the final map reconstruction. Each orientation is represented by a cylinder, for which both the height and color (from blue to red) are proportional to the number of particles for that specific direction. (f) Local resolution of the cryo-density map. (g) The FSC curve of the final reconstruction (black) and the FSC curve between the final reconstruction and the map calculated from the atom model (blue). (h) Model validation. Blue, model versus the summed map. Black, model versus half 1 map (called ‘work’, used for model refinement). Red, model versus half 2 map (called ‘free’, not used for model refinement).

Supplementary Figure 5 Representative cryo-EM density maps.

(a) Cryo-EM density maps and atomic models of selected regions of TRPML3 in the ML-SA1-bound pH 7.4 condition (left) or the apo pH 4.8 condition (right). The ML-SA1-bound pH 7.4 maps were low-pass filtered to 3.62 Å and amplified by a temperature factor of -180 Å2, and were contoured at 3.0σ. The apo pH 4.8 maps were low-pass filtered to 4.65 Å and amplified by a temperature factor of -244 Å2, and were contoured at 4.0σ. (b) Comparison of the cryo-EM density map in a crevice surrounded by S5, S6 and pore helix 1 in the apo pH 7.4 (left, filtered to 4.06 Å and contoured at 3.0σ) and ML-SA1-bound pH 7.4 (middle, filtered to 3.62 Å and contoured at 3.0σ) structures. The right panel shows the normalized different density map between the two structures (filtered to 6 Å and contoured at 15.0σ).

Supplementary Figure 6 Structure of the TRPML3 PMD compared with that of the TRPML1 PMD.

(a) Electrostatic-potential surface representation of the TRPML3 PMD, viewed from the luminal side of the membrane (left) or parallel to the membrane (right). (b) Superposition of TRPML3 and TRPML1 PMDs. (c). Superposition of the backbone α carbons of the two luminal pore-loops in stereo view. Same color representation as in b. The first amino acid of each luminal pore-loop is numbered 1. (d) Stereo view of the TRPML3 luminal pore-loop. (e) Stereo view of the TRPML1 luminal pore-loop.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 2571 kb)

Life Sciences Reporting Summary

Original electrophysiological data for Figures 2 and 5 (PDF 130 kb)

Supplementary Data Set 1

Source data for Figures 2 and 5. (XLSX 95 kb)

Conformational changes induced by the binding of ML-SA1

ML-SA1 binding causes many movements. For example, when viewed from the side, S5 and S6 move outward and the S4-S5 linker moves downward by 2 to 4 Å, the pore-loop moves downward by 2 Å, and S6 undergoes a 27 degree counterclockwise rotation. The zoom-in view from the bottom shows the movement of I498 (in space-filling form) between the closed state and open state upon ML-SA1 binding and unbinding. (MOV 23233 kb)

Conformational changes induced by pH changes

The movie shows a morph between the pH 7.4 apo structure and the pH 4.8 apo structure. The channel is viewed first from the side (parallel to the membrane) and then from top down (perpendicular to the membrane). (MOV 16106 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Li, M., Su, D. et al. Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol 24, 1146–1154 (2017). https://doi.org/10.1038/nsmb.3502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing