Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning

Abstract

Eukaryotic mRNA transcription initiation is directed by the formation of the megadalton-sized preinitiation complex (PIC). After PIC formation, double-stranded DNA (dsDNA) is unwound to form a single-stranded DNA bubble, and the template strand is loaded into the polymerase active site. DNA opening is catalyzed by Ssl2 (XPB), the dsDNA translocase subunit of the basal transcription factor TFIIH. In yeast, transcription initiation proceeds through a scanning phase during which downstream DNA is searched for optimal start sites. Here, to test models for initial DNA opening and start-site scanning, we measure the DNA-bubble sizes generated by Saccharomyces cerevisiae PICs in real time using single-molecule magnetic tweezers. We show that ATP hydrolysis by Ssl2 opens a 6-base-pair (bp) bubble that grows to 13 bp in the presence of NTPs. These observations support a two-step model wherein ATP-dependent Ssl2 translocation leads to a 6-bp open complex that RNA polymerase II expands via NTP-dependent RNA transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: NTP-catalyzed DNA opening.
Figure 3: Formation of stable elongation complexes.
Figure 4: ATP-catalyzed DNA opening.
Figure 5: A partially open complex is an intermediate in transcription initiation.
Figure 6: A 6-bp bubble is sufficient to support initiation in the absence of TFIIH.
Figure 7: Models of transcription initiation.

Similar content being viewed by others

References

  1. Sainsbury, S., Bernecky, C. & Cramer, P. Structural basis of transcription initiation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 129–143 (2015).

    CAS  PubMed  Google Scholar 

  2. Grünberg, S. & Hahn, S. Structural insights into transcription initiation by RNA polymerase II. Trends Biochem. Sci. 38, 603–611 (2013).

    PubMed  Google Scholar 

  3. Saecker, R.M., Record, M.T. Jr. & deHaseth, P.L. Mechanism of bacterial transcription initiation: promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 754–771 (2011).

  4. Qureshi, S.A., Bell, S.D. & Jackson, S.P. Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J. 16, 2927–2936 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bell, S.D., Jaxel, C., Nadal, M., Kosa, P.F. & Jackson, S.P. Temperature, template topology, and factor requirements of archaeal transcription. Proc. Natl. Acad. Sci. USA 95, 15218–15222 (1998).

    CAS  PubMed  Google Scholar 

  6. Beckouet, F. et al. Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol. Cell. Biol. 28, 1596–1605 (2008).

    CAS  PubMed  Google Scholar 

  7. Keys, D.A. et al. Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex. Genes Dev. 10, 887–903 (1996).

    CAS  PubMed  Google Scholar 

  8. Lassar, A.B., Martin, P.L. & Roeder, R.G. Transcription of class III genes: formation of preinitiation complexes. Science 222, 740–748 (1983).

    CAS  PubMed  Google Scholar 

  9. Holstege, F.C. & Timmers, H.T. Analysis of open complex formation during RNA polymerase II transcription initiation using heteroduplex templates and potassium permanganate probing. Methods 12, 203–211 (1997).

    CAS  PubMed  Google Scholar 

  10. Wang, W., Carey, M. & Gralla, J.D. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255, 450–453 (1992).

    CAS  PubMed  Google Scholar 

  11. Dvir, A. et al. A role for ATP and TFIIH in activation of the RNA polymerase II preinitiation complex prior to transcription initiation. J. Biol. Chem. 271, 7245–7248 (1996).

    CAS  PubMed  Google Scholar 

  12. Grünberg, S., Warfield, L. & Hahn, S. Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening. Nat. Struct. Mol. Biol. 19, 788–796 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim, T.K., Ebright, R.H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1422 (2000).

    CAS  PubMed  Google Scholar 

  15. Miller, G. & Hahn, S. A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex. Nat. Struct. Mol. Biol. 13, 603–610 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murakami, K. et al. Architecture of an RNA polymerase II transcription pre-initiation complex. Science 342, 1238724 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Fishburn, J., Tomko, E., Galburt, E. & Hahn, S. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc. Natl. Acad. Sci. USA 112, 3961–3966 (2015).

    CAS  PubMed  Google Scholar 

  18. He, Y., Fang, J., Taatjes, D.J. & Nogales, E. Structural visualization of key steps in human transcription initiation. Nature 495, 481–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pal, M., Ponticelli, A.S. & Luse, D.S. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol. Cell 19, 101–110 (2005).

    CAS  PubMed  Google Scholar 

  20. Holstege, F.C., van der Vliet, P.C. & Timmers, H.T. Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15, 1666–1677 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fazal, F.M., Meng, C.A., Murakami, K., Kornberg, R.D. & Block, S.M. Real-time observation of the initiation of RNA polymerase II transcription. Nature 525, 274–277 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Revyakin, A., Ebright, R.H. & Strick, T.R. Promoter unwinding and promoter clearance by RNA polymerase: detection by single-molecule DNA nanomanipulation. Proc. Natl. Acad. Sci. USA 101, 4776–4780 (2004).

    CAS  PubMed  Google Scholar 

  23. Revyakin, A., Liu, C., Ebright, R.H. & Strick, T.R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314, 1139–1143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Howan, K. et al. Initiation of transcription-coupled repair characterized at single-molecule resolution. Nature 490, 431–434 (2012).

    CAS  PubMed  Google Scholar 

  25. Barnes, C.O. et al. Crystal structure of a transcribing RNA polymerase II complex reveals a complete transcription bubble. Mol. Cell 59, 258–269 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Majovski, R.C., Khaperskyy, D.A., Ghazy, M.A. & Ponticelli, A.S. A functional role for the switch 2 region of yeast RNA polymerase II in transcription start site utilization and abortive initiation. J. Biol. Chem. 280, 34917–34923 (2005).

    CAS  PubMed  Google Scholar 

  27. Conesa, C. & Acker, J. Sub1/PC4 a chromatin associated protein with multiple functions in transcription. RNA Biol. 7, 287–290 (2010).

    PubMed  Google Scholar 

  28. Buratowski, S., Hahn, S., Guarente, L. & Sharp, P.A. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56, 549–561 (1989).

    CAS  PubMed  Google Scholar 

  29. Fishburn, J. & Hahn, S. Architecture of the yeast RNA polymerase II open complex and regulation of activity by TFIIF. Mol. Cell. Biol. 32, 12–25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Spangler, L., Wang, X., Conaway, J.W., Conaway, R.C. & Dvir, A. TFIIH action in transcription initiation and promoter escape requires distinct regions of downstream promoter DNA. Proc. Natl. Acad. Sci. USA 98, 5544–5549 (2001).

    CAS  PubMed  Google Scholar 

  31. Crick, F.H. & Klug, A. Kinky helix. Nature 255, 530–533 (1975).

    CAS  PubMed  Google Scholar 

  32. Wiggins, P.A., Phillips, R. & Nelson, P.C. Exact theory of kinkable elastic polymers. Phys. Rev. E 71, 021909 (2005).

    Google Scholar 

  33. Vafabakhsh, R. & Ha, T. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337, 1097–1101 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).

    CAS  PubMed  Google Scholar 

  35. Robinson, P.J. et al. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell 166, 1411–1422.e16 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Giardina, C. & Lis, J.T. DNA melting on yeast RNA polymerase II promoters. Science 261, 759–762 (1993).

    CAS  PubMed  Google Scholar 

  37. Zhang, D.-Y., Carson, D.J. & Ma, J. The role of TFIIB-RNA polymerase II interaction in start site selection in yeast cells. Nucleic Acids Res. 30, 3078–3085 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Mühlbacher, W. et al. Conserved architecture of the core RNA polymerase II initiation complex. Nat. Commun. 5, 4310 (2014).

    PubMed  Google Scholar 

  39. Yan, M. & Gralla, J.D. The use of ATP and initiating nucleotides during postrecruitment steps at the activated adenovirus E4 promoter. J. Biol. Chem. 274, 34819–34824 (1999).

    CAS  PubMed  Google Scholar 

  40. Holstege, F.C., Fiedler, U. & Timmers, H.T. Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16, 7468–7480 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fuss, J.O. & Tainer, J.A. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst.) 10, 697–713 (2011).

    CAS  Google Scholar 

  42. Compe, E. & Egly, J.M. TFIIH: when transcription met DNA repair. Nat. Rev. Mol. Cell Biol. 13, 343–354 (2012).

    CAS  PubMed  Google Scholar 

  43. Kuehner, J.N. & Brow, D.A. Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J. Biol. Chem. 281, 14119–14128 (2006).

    CAS  PubMed  Google Scholar 

  44. Galburt, E.A., Tomko, E.J., Stump, W.T. & Ruiz Manzano, A. Force-dependent melting of supercoiled DNA at thermophilic temperatures. Biophys. Chem. 187–188, 23–28 (2014).

    PubMed  Google Scholar 

  45. Schlingman, D., Mack, A. & Mochrie, S. A new method for the covalent attachment of DNA to a surface for single-molecule studies. Colloids Surf. B Biointerfaces 83, 91–95 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Revyakin, A., Allemand, J.F., Croquette, V., Ebright, R.H. & Strick, T.R. Single-molecule DNA nanomanipulation: detection of promoter-unwinding events by RNA polymerase. Methods Enzymol. 370, 577–598 (2003).

    CAS  PubMed  Google Scholar 

  47. Cost, G.J. Enzymatic ligation assisted by nucleases: simultaneous ligation and digestion promote the ordered assembly of DNA. Nat. Protoc. 2, 2198–2202 (2007).

    CAS  PubMed  Google Scholar 

  48. Seol, Y. & Neuman, K.C. Magnetic tweezers for single-molecule manipulation. Methods Mol. Biol. 783, 265–293 (2011).

    CAS  PubMed  Google Scholar 

  49. Cnossen, J.P., Dulin, D. & Dekker, N.H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Rev. Sci. Instrum. 85, 103712 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Science Foundation Molecular and Cellular Biosciences Grant 1243918 (to E.A.G.) and by National Institutes of Health General Medical Science Grants 5R01GM120559 (to E.A.G.) and 2R01GM053451 (to S.H.). E.J.T. was partially supported by a Keck Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions were as follows: E.J.T., J.F., S.H., and E.A.G. designed the research. E.J.T. performed the magnetic tweezers experiments. J.F. purified factors and performed the in vitro transcription reactions. E.J.T. and E.A.G. analyzed single-molecule data. J.F. and S.H. analyzed in vitro experiments. E.J.T., J.F., S.H., and E.A.G. wrote the paper.

Corresponding author

Correspondence to Eric A Galburt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Bubble size distribution of a subset of NTP traces.

Probability distribution generated from the subset of traces showing sharp open/close transitions (N = 7) collected in the presence of 500 μM NTP. The data (blue circles) are well fit (red) with only two states: a closed conformation (grey) and an open conformation with a 13 bp DNA bubble (magenta). The distribution from DNA only traces is shown for comparison (dashed line).

Supplementary Figure 2 Comparison of data collected in the presence of 500 μM ATP on negatively and positively supercoiled templates.

(a) Examples of DNA unwinding in the presence of 500 μM ATP on negatively (green) and positively (red) supercoiled templates. The changes in extension under different supercoiling directions are similar and in opposite directions suggesting that there is no large compaction occurring during DNA unwinding. (b) The distributions of length changes for negatively supercoiled templates (green) and positively supercoiled templates (red) as compared to the DNA only control (black dashed).

Supplementary Figure 3 Traces in the absence of ATP do not show DNA unwinding.

(a) The DNA extension vs. time of negatively supercoiled DNA (light grey) followed by flowing in PIC components in the absence of ATP (dark grey) and the resulting trace. (b) Two traces in the presence of PIC components and the absence of ATP under both negatively and positively supercoiled conditions. The rotation-extension curve from rotating the magnets to convert from negative to positive super-helicity takes place in the shaded regions. (c) Distributions of observed extensions of DNA alone (dashed) and in the presence of PIC components from the trace shown in (a).

Supplementary Figure 4 Comparison of data collected in the presence of 500 μM dATP and 50 μM NTP on negatively and positively supercoiled templates.

The distributions of length changes for negatively supercoiled templates (green) and positively supercoiled templates (red) as compared to the DNA only control (black dashed). The changes in extension under different supercoiling directions are similar and in opposite directions suggesting that there is no large compaction occurring during DNA unwinding.

Supplementary Figure 5 Sub1 and TFIIA do not lead to larger bubbles.

Bubble size distributions in the presence (dotted line, N = 12) and absence of Sub1 and TFIIA. Between 28 and 100 nM Sub1 and 100 nM TFIIA were introduced to the flow cell concomitantly with the general transcription factors under conditions of 500 μM dATP and 50 μM NTP as described in the text.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Note (PDF 878 kb)

Life Sciences Reporting Summary (PDF 129 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomko, E., Fishburn, J., Hahn, S. et al. TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning. Nat Struct Mol Biol 24, 1139–1145 (2017). https://doi.org/10.1038/nsmb.3500

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3500

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing