Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis

Abstract

Elongation factor 4 (EF4) is a key quality-control factor in translation. Despite its high conservation throughout evolution, EF4 deletion in various organisms has not yielded a distinct phenotype. Here we report that genetic ablation of mitochondrial EF4 (mtEF4) in mice causes testis-specific dysfunction in oxidative phosphorylation, leading to male infertility. Deletion of mtEF4 accelerated mitochondrial translation at the cost of producing unstable proteins. Somatic tissues overcame this defect by activating mechanistic (mammalian) target of rapamycin (mTOR), thereby increasing rates of cytoplasmic translation to match rates of mitochondrial translation. However, in spermatogenic cells, the mTOR pathway was downregulated as part of the developmental program, and the resulting inability to compensate for accelerated mitochondrial translation caused cell-cycle arrest and apoptosis. We detected the same phenotype and molecular defects in germline-specific mtEF4-knockout mice. Thus, our study demonstrates cross-talk between mtEF4-dependent quality control in mitochondria and cytoplasmic mTOR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Male infertility is the only observed phenotype of mtEF4 knockout mice, as verified in germline-specific-knockout mice.
Figure 2: mtEF4 is abundant in spermatocytes and round spermatids, and its ablation induces spermatogenesis arrest.
Figure 3: Spermatogenesis is inhibited by mitochondrial abnormalities.
Figure 4: mtEF4 ablation leads to deficiency in mtDNA-encoded OXPHOS subunits.
Figure 5: Deletion of mtEF4 induces upregulation of mitochondrial translation in both somatic and sperm cells but causes opposing responses in mTOR signaling.
Figure 6: Deletion of mtEF4 induces upregulation of cytoplasmic translation in somatic cells but downregulation in sperm cells.
Figure 7: Working model of the retrograde response after mtEF4 deletion in somatic and sperm cells.

Similar content being viewed by others

References

  1. Wallace, D.C. Mitochondria, bioenergetics, and the epigenome in eukaryotic and human evolution. Cold Spring Harb. Symp. Quant. Biol. 74, 383–393 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Smits, P., Smeitink, J. & van den Heuvel, L. Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J. Biomed. Biotechnol. 2010, 737385 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Gray, M.W. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4, a011403 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Zhang, X. et al. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158, 607–619 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Kapp, L.D. & Lorsch, J.R. The molecular mechanics of eukaryotic translation. Annu. Rev. Biochem. 73, 657–704 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dever, T.E. & Green, R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb. Perspect. Biol. 4, a013706 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Qin, Y. et al. The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127, 721–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Yamamoto, H. et al. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Nat. Rev. Microbiol. 12, 89–100 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Bauerschmitt, H., Funes, S. & Herrmann, J.M. The membrane-bound GTPase Guf1 promotes mitochondrial protein synthesis under suboptimal conditions. J. Biol. Chem. 283, 17139–17146 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Margus, T., Remm, M. & Tenson, T. Phylogenetic distribution of translational GTPases in bacteria. BMC Genomics 8, 15 (2007).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Han, B. & Qin, Y. Bioinformatics analysis reveals that LepA C-terminal domain is highly conserved in domain architectures and phylogenetic distribution. Scientia Sinica Chimica 42, 24–31 (2012).

    Article  CAS  Google Scholar 

  12. Zhang, D. & Qin, Y. The paradox of elongation factor 4: highly conserved, yet of no physiological significance? Biochem. J. 452, 173–181 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Lomelí, H., Ramos-Mejía, V., Gertsenstein, M., Lobe, C.G. & Nagy, A. Targeted insertion of Cre recombinase into the TNAP gene: excision in primordial germ cells. Genesis 26, 116–117 (2000).

    Article  PubMed  Google Scholar 

  14. Wang, H. et al. Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res. 24, 852–869 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fernandez-Capetillo, O. et al. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4, 497–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Naughton, C.K., Jain, S., Strickland, A.M., Gupta, A. & Milbrandt, J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol. Reprod. 74, 314–321 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, F. & Handel, M.A. A mutation in Mtap2 is associated with arrest of mammalian spermatocytes before the first meiotic division. Genes (Basel) 2, 21–35 (2011).

    Article  CAS  Google Scholar 

  18. Zhang, D. et al. EF4 disengages the peptidyl-tRNA CCA end and facilitates back-translocation on the 70S ribosome. Nat. Struct. Mol. Biol. 23, 125–131 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, H., Pan, D., Pech, M. & Cooperman, B.S. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. J. Mol. Biol. 396, 1043–1052 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Liu, H. et al. The conserved protein EF4 (LepA) modulates the elongation cycle of protein synthesis. Proc. Natl. Acad. Sci. USA 108, 16223–16228 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hay, N. & Sonenberg, N. Upstream and downstream of mTOR. Genes Dev. 18, 1926–1945 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Wrobel, L. et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature 524, 485–488 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Morita, M. et al. mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation. Cell Metab. 18, 698–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Cunningham, J.T. et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1α transcriptional complex. Nature 450, 736–740 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Düvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Johnson, S.C. et al. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome. Science 342, 1524–1528 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mori, H. et al. Critical role for hypothalamic mTOR activity in energy balance. Cell Metab. 9, 362–374 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Yuan, H.X., Xiong, Y. & Guan, K.L. Nutrient sensing, metabolism, and cell growth control. Mol. Cell 49, 379–387 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Inoki, K., Kim, J. & Guan, K.L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Laplante, M. & Sabatini, D.M. mTOR signaling. Cold Spring Harb. Perspect. Biol. 4, a011593 (2012).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  31. Laplante, M. & Sabatini, D.M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. De Martino, C. et al. Morphological, histochemical and biochemical studies on germ cell mitochondria of normal rats. Cell Tissue Res. 196, 1–22 (1979).

    Article  CAS  PubMed  Google Scholar 

  33. Conine, C.C. et al. Argonautes promote male fertility and provide a paternal memory of germline gene expression in C. elegans. Cell 155, 1532–1544 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Richter-Dennerlein, R., Dennerlein, S. & Rehling, P. Integrating mitochondrial translation into the cellular context. Nat. Rev. Mol. Cell Biol. 16, 586–592 (2015).

    Article  PubMed  Google Scholar 

  35. Dennerlein, S. & Rehling, P. Human mitochondrial COX1 assembly into cytochrome c oxidase at a glance. J. Cell Sci. 128, 833–837 (2015).

    CAS  PubMed  Google Scholar 

  36. Mick, D.U., Fox, T.D. & Rehling, P. Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation. Nat. Rev. Mol. Cell Biol. 12, 14–20 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fernández-Vizarra, E. & Zeviani, M. Nuclear gene mutations as the cause of mitochondrial complex III deficiency. Front. Genet. 6, 134 (2015).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Stroud, D.A. & Ryan, M.T. Stalking the mitochondrial ATP synthase: Ina found guilty by association. EMBO J. 33, 1617–1618 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Mckenzie, M. & Ryan, M.T. Assembly factors of human mitochondrial complex I and their defects in disease. IUBMB Life 62, 497–502 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Mimaki, M., Wang, X., McKenzie, M., Thorburn, D.R. & Ryan, M.T. Understanding mitochondrial complex I assembly in health and disease. Biochim. Biophys. Acta 1817, 851–862 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Houtkooper, R.H. et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497, 451–457 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Durieux, J., Wolff, S. & Dillin, A. The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144, 79–91 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Popow, J. et al. FASTKD2 is an RNA-binding protein required for mitochondrial RNA processing and translation. RNA 21, 1873–1884 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tu, Y.T. & Barrientos, A. The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep. 10, 854–864 (2015).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Krause, W. Computer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. Hum. Reprod. 10 (suppl. 1), 60–66 (1995).

    Article  PubMed  Google Scholar 

  46. Boerboom, D. et al. β-catenin stabilization in gonadotropes impairs FSH synthesis in male mice in vivo. Endocrinology 156, 323–333 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Enders, G.C. & May, J.J. Developmentally regulated expression of a mouse germ cell nuclear antigen examined from embryonic day 11 to adult in male and female mice. Dev. Biol. 163, 331–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Wittig, I., Braun, H.P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Khvorostov, I., Zhang, J. & Teitell, M. Probing for mitochondrial complex activity in human embryonic stem cells. J. Vis. Exp. 16, e724 (2008).

    Google Scholar 

  50. McKee, E.E., Grier, B.L., Thompson, G.S. & McCourt, J.D. Isolation and incubation conditions to study heart mitochondrial protein synthesis. Am. J. Physiol. 258, E492–E502 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Y. Zhang, Q. Chen and X. Fu for help and discussions, X. Zhang for proteomics data analyses, L. Sun and Y. Jia for assistance with TEM, and T. Juelich for English editing. This work was supported by grants from the Major State Basic Research Development Program of China (2013CB531200 and 2012CB911000 to Y.Q.), the National Natural Science Foundation of China (31322015 and 31270847 to Y.Q.), the Institute of Biophysics 135 Goal-oriented Project, National Laboratory of Biomacromolecules (Institute of Biophysics, Chinese Academy of Sciences) to Y.Q., the Opening Project of the Zhejiang Provincial Top Key Discipline of Clinical Medicine (LKFJ009) to Y.Q. and the Shanghai Key Laboratory of Molecular Andrology, China to Y.Q. We thank F. Gao (Institute of Zoology, Beijing) for anti-GCNA1.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q. conceived the project and designed the experiments. Y.G. and X.B. performed most experiments and processed and analyzed the data. D.Z., C.H., J.Y., W.L., X.C., Z.C., F.S., Z.Z., and F.G. assisted with experiments. Y.Q. wrote the manuscript, which was edited by all authors.

Corresponding author

Correspondence to Yan Qin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Generation and validation of mtEF4-knockout mice.

(a) Alignment of EF4 (E. coli) with mouse, yeast and human EF4. (b) Domain structures of mouse mtEF4 compared to those of EF4 (E. coli). (c) mtEF4 is ubiquitous in mice tissues and organs. (d) Schematic strategy for the generation of mtEF4 KO mouse. (e) Southern blot verification of a single introduction of the targeting construct in the homologous recombined embryonic stem (ES) cell clones. C: control, 129 ES cells. 1-3: positive clones. 5’-: 5’-primer. 3’-: 3’-primer. (f) PCR-based genotyping of KO and gKO mice. (g) qPCR of mtEF4 transcripts from various tissues of WT and KO mice (mean ± s.d., n = 12 mice). (h) Western blotting (WB) of mtEF4 protein from total WT (+/+) and KO (−/−) mice, and gKO mice.

Supplementary Figure 2 Morphology of mitochondria-rich tissues and hormones from WT and total-KO male mice.

(a, b) Macrograph (a) and Hematoxylin and eosin (H&E) staining (b) of the heart. Scale bar: 200 μm (c) H&E staining of the liver, muscle and cerebrum. Scale bar: 200 μm (d) Quantification of the seminiferous tubule diameters (mean ± s.d., n = 5 mice, **P < 0.01). (e-g) Hormone changes upon mtEF4 ablation. Comparison of WT, KO and gKO mice serum follicle-stimulating hormone (FSH) (e), luteinizing hormone (LH) (f) and testosterone (T) (g) (mean ± s.d., n = 5 mice, *P < 0.05, **P < 0.01).

Supplementary Figure 3 Morphology of mitochondria-rich tissues from WT and gKO male mice.

(a-c) H&E staining of the heart, liver, muscle, cerebrum (a), testis (b) and epididymis (epi) (c) from WT and gKO mice. Scale bar: 200 μm. Red frame: zoom-in, scale bar: 50 μm. Red circle: immature spermatogenic cells. (d) The concentration of the spermatozoa in the epididymis. (e) Morphology of the sperms. Hoechst33258 (blue) and mitotracker (red) staining indicates nuclei and mitochondria, respectively. Abnormal mitochondrial sheaths are indicated by white arrows. Scale bar: 50 μm. (f, g) The mobility of the sperms. (h) Computer-assisted sperm analysis (CASA) parameter of the sperms. Average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), amplitude of lateral head displacement (ALH), beat cross frequency (BCF) (mean ± s.d., n = 10 mice, ***P < 0.001). (i, j) EF4 is co-localized with the ribosome in the mitochondria of mouse testicular tissue. (k, l) Transmission electron microscope (TEM) photographs of gKO testis (k) and the sperms (l). Mt: mitochondria, Nu: nucleus, scale bar: 1 μm. Red frame: zoom-in. Scale bar: 1 μm.

Supplementary Figure 4 Qualitative and quantitative analysis of OXPHOS subunits from mitochondria-rich tissues of WT and KO male mice.

(a) Blue native gels (BNG) of heart, liver, muscle and cerebrum mitochondria. (b) In-gel activity (IGA) of complex I and IV. (c) Quantification of IGA from complex I (left) and complex IV (right) (mean ± s.d., n = 4 mice). (d) WB of nuclear and mitochondrial DNA encoded OXPHOS complex subunits. (e) Relative amount (%) of arbitrary units from samples in (d). Tom20: internal control, mean ± s.d., n = 5 mice.

Supplementary Figure 5 Qualitative and quantitative analysis of OXPHOS complexes and subunits from mitochondria-rich tissues of WT and gKO male mice.

(a, b) BNG (a) and IGA (b) of heart, liver, muscle and cerebrum mitochondria show similar amount of OXPHOS complexes in WT and gKO mice. (c) Quantification of IGA from complex I (left) and complex IV (right) (mean ± s.d., n = 4 mice). (d) IGA of OXPHOS complexes from WT and gKO heart, testis and epididymis. (e, f) WB of nDNA (e) and mtDNA (f) encoded OXPHOS complex subunits in the samples as in (d). (g, h) Relative amount (%) of arbitrary units from samples in (e) and (f), respectively. H: heart, T: tesits, E: epididymis, Tom20: internal control, mean ± s.d., n = 5 mice, **P < 0.01, ***P < 0.001.

Supplementary Figure 6 Quantification of mtDNA, mRNA of OXPHOS subunits, and mitochondrial ribosomes.

(a) Relative mtDNA content (mean ± s.d., n = 10 mice, *P < 0.05). (b) Relative quantification of nDNA (blue) and mtDNA (red) encoded OXPHOS subunits. The ratio was defined as the qPCR value of each tested transcript from KO sample versus from WT sample. Actin: internal control, mean ± s.d., n = 10 mice. (c) Quantification of the expression of mitochondrial transcription factor TFAM (mean ± s.d., n = 5 mice, *P < 0.05). (d) Quantification of the expression of mitochondrial small and large ribosomal subunit protein, MRPS18 and MRPL11, respectively. Tom20: internal control, mean ± s.d., n = 3 mice.

Supplementary Figure 7 [35S]methionine pulse-chase-labeling and protein synthesis of isolated mitochondria from WT and gKO testes.

Purified mitochondria were pulse labeled with [35S]-Met for 1 h and subsequently chased by the addition of an excess of unlabeled Met with 3 h and 5 h incubation in the presence (a) or absence (c) of protease inhibitor. The thirteen mitochondrial translation products are indicated. (b, d) The quantification of (a) and (c), respectively. Internal control: Tom20, mean ± s.d., n = 3 mice, ***P < 0.001.

Supplementary Figure 8 mTOR inhibition in the heart results in OXPHOS defects, and deletion of mtEF4 induces downregulation of cytoplasmic translation in sperm cells.

(a) Wet weight of the hearts from male mice treated with DMSO or rapamycin (mean ± s.d., n = 5 mice, **P < 0.01). (b) Quantification of the OXPHOS subunits of the DMSO/rapamycin treated mice. The quantitative value of the sample WT heart treated with DMSO was defined as 100%. Tom20: internal control, mean ± s.d., n = 3 mice, *P < 0.05, **P < 0.01. (c, d) Cytoplasmic polysome patterns of WT (blue) and gKO (red) tissues. On the right, the monosomes (80S) versus polysomes ratio was quantified (mean ± s.d., n = 3 mice, *P<0.05). (e, f) Distribution of ATP5D mRNAs across the density gradients from (c, d) was determined by RT-sqPCR. Red square, increased subunits and monosomes in gKO testis than in WT testis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1 and 2 (PDF 4760 kb)

Supplementary Table 3

Variation in cellular signaling pathways (XLSX 661 kb)

Supplementary Data Set 1

Uncropped images for the main figures (PDF 1073 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Bai, X., Zhang, D. et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol 23, 441–449 (2016). https://doi.org/10.1038/nsmb.3206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing