Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Universality of supersaturation in protein-fiber formation

Abstract

The thermodynamics and kinetics of the aggregation of sickle-cell hemoglobin into fibers have been studied in great detail under a wide range of solution conditions. The stability of the fiber is measured by the solubility; the kinetics is characterized by a delay before the appearance of fibers. A review of data in the literature shows that there is no correlation of the delay time with fiber stability and only a weak correlation with the initial protein concentration. There is, however, a striking collapse of all the data onto a single universal curve when the delay time is plotted versus the supersaturation, which is the ratio of the initial protein concentration to the solubility, expressed as activities. Collapse onto the same universal curve is also obtained when using delay times calculated from the double-nucleation theoretical model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relations among delay time and solubility, initial concentration and supersaturation as ratio of activities.
Figure 2: Kinetics of sickle-hemoglobin aggregation and connection to disease pathogenesis.

Similar content being viewed by others

References

  1. Szabo, A. Kinetics of hemoglobin and transition state theory. Proc. Natl. Acad. Sci. USA 75, 2108–2111 (1978).

    CAS  PubMed  Google Scholar 

  2. Eaton, W.A., Henry, E.R. & Hofrichter, J. Application of linear free energy relations to protein conformational changes: the quaternary structural change of hemoglobin. Proc. Natl. Acad. Sci. USA 88, 4472–4475 (1991).

    CAS  PubMed  Google Scholar 

  3. Matouschek, A., Kellis, J.T. Jr., Serrano, L. & Fersht, A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 340, 122–126 (1989).

    CAS  PubMed  Google Scholar 

  4. Mallam, A.L. & Jackson, S.E. in Progress in Molecular Biology and Translational Science Vol. 84 (ed. Conn, P.M.) Part B, 57–113 (2008).

  5. Muñoz, V., Thompson, P.A., Hofrichter, J. & Eaton, W.A. Folding dynamics and mechanism of β-hairpin formation. Nature 390, 196–199 (1997).

    PubMed  Google Scholar 

  6. Henry, E.R., Bettati, S., Hofrichter, J. & Eaton, W.A. A tertiary two-state allosteric model for hemoglobin. Biophys. Chem. 98, 149–164 (2002).

    CAS  PubMed  Google Scholar 

  7. Henry, E.R., Best, R.B. & Eaton, W.A. Comparing a simple theoretical model for protein folding with all-atom molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 110, 17880–17885 (2013).

    CAS  PubMed  Google Scholar 

  8. McPherson, A. Introduction to protein crystallization. Methods 34, 254–265 (2004).

    CAS  PubMed  Google Scholar 

  9. Hofrichter, J., Ross, P.D. & Eaton, W.A. Supersaturation in sickle cell hemoglobin solutions. Proc. Natl. Acad. Sci. USA 73, 3035–3039 (1976).

    CAS  PubMed  Google Scholar 

  10. Ferrone, F.A., Hofrichter, J. & Eaton, W.A. Kinetics of sickle hemoglobin polymerization. I. Studies using temperature-jump and laser photolysis techniques. J. Mol. Biol. 183, 591–610 (1985).

    CAS  PubMed  Google Scholar 

  11. Hofrichter, J. Ligand binding and the gelation of sickle cell hemoglobin. J. Mol. Biol. 128, 335–369 (1979).

    CAS  PubMed  Google Scholar 

  12. Sunshine, H.R., Hofrichter, J. & Eaton, W.A. Gelation of sickle cell hemoglobin in mixtures with normal adult and fetal hemoglobins. J. Mol. Biol. 133, 435–467 (1979).

    CAS  PubMed  Google Scholar 

  13. Bunn, H.F. et al. Molecular and cellular pathogenesis of hemoglobin SC disease. Proc. Natl. Acad. Sci. USA 79, 7527–7531 (1982).

    CAS  PubMed  Google Scholar 

  14. Ferrone, F.A., Hofrichter, J. & Eaton, W.A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J. Mol. Biol. 183, 611–631 (1985).

    CAS  PubMed  Google Scholar 

  15. Rotter, M., Aprelev, A., Adachi, K. & Ferrone, F.A. Molecular crowding limits the role of fetal hemoglobin in therapy for sickle cell disease. J. Mol. Biol. 347, 1015–1023 (2005).

    CAS  PubMed  Google Scholar 

  16. Rotter, M., Yosmanovich, D., Briehl, R.W., Kwong, S. & Ferrone, F.A. Nucleation of sickle hemoglobin mixed with hemoglobin A: experimental and theoretical studies of hybrid-forming mixtures. Biophys. J. 101, 2790–2797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ross, P.D., Briehl, R.W. & Minton, A.P. Temperature dependence of nonideality in concentrated solutions of hemoglobin. Biopolymers 17, 2285–2288 (1978).

    CAS  PubMed  Google Scholar 

  18. Leffler, J.E. Parameters for the description of transition states. Science 117, 340–341 (1953).

    CAS  PubMed  Google Scholar 

  19. Cho, S.S., Levy, Y. & Wolynes, P.G. P versus Q: structural reaction coordinates capture protein folding on smooth landscapes. Proc. Natl. Acad. Sci. USA 103, 586–591 (2006).

    CAS  PubMed  Google Scholar 

  20. Best, R.B., Hummer, G. & Eaton, W.A. Native contacts determine protein folding mechanisms in atomistic simulations. Proc. Natl. Acad. Sci. USA 110, 17874–17879 (2013).

    CAS  PubMed  Google Scholar 

  21. Hofrichter, J., Ross, P.D. & Eaton, W.A. Kinetics and mechanism of deoxyhemoglobin S gelation: a new approach to understanding sickle cell disease. Proc. Natl. Acad. Sci. USA 71, 4864–4868 (1974).

    CAS  PubMed  Google Scholar 

  22. Eaton, W.A. & Hofrichter, J. Hemoglobin S gelation and sickle cell disease. Blood 70, 1245–1266 (1987).

    CAS  PubMed  Google Scholar 

  23. Ferrone, F.A. The delay time in sickle cell disease after 40 years: a paradigm assessed. Am. J. Hematol. 90, 438–445 (2015).

    PubMed  Google Scholar 

  24. Eaton, W.A. & Hofrichter, J. Sickle cell hemoglobin polymerization. Adv. Protein Chem. 40, 63–279 (1990).

    CAS  PubMed  Google Scholar 

  25. Sunshine, H.R., Hofrichter, J. & Eaton, W.A. Requirement for therapeutic inhibition of sickle haemoglobin gelation. Nature 275, 238–240 (1978).

    CAS  PubMed  Google Scholar 

  26. Bauer, D.E., Kamran, S.C. & Orkin, S.H. Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. Blood 120, 2945–2953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Cohen, S.I.A. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 065105 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. Ciryam, P., Tartaglia, G.G., Morimoto, R.I., Dobson, C.M. & Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep. 5, 781–790 (2013).

    CAS  PubMed  Google Scholar 

  29. Mozzarelli, A., Hofrichter, J. & Eaton, W.A. Delay time of hemoglobin S polymerization prevents most cells from sickling in vivo. Science 237, 500–506 (1987).

    CAS  PubMed  Google Scholar 

  30. Noguchi, C.T., Torchia, D.A. & Schechter, A.N. Intracellular polymerization of sickle hemoglobin: effects of cell heterogeneity. J. Clin. Invest. 72, 846–852 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bunn, H.F. & McDonough, M. Asymmetrical hemoglobin hybrids: an approach to the study of subunit interactions. Biochemistry 13, 988–993 (1974).

    CAS  PubMed  Google Scholar 

  32. Oosawa, F. & Asakura, S. Thermodynamics of the Polymerization of Protein (Academic Press, 1975).

  33. Eaton, W.A. & Hofrichter, J. in Clinical and Biochemical Aspects of Hemoglobin Abnormalities (ed. Caughey, W.S.) 443–457 (Academic Press, 1978).

  34. Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).

    CAS  Google Scholar 

  35. Cao, Z. & Ferrone, F.A.A. A 50th order reaction predicted and observed for sickle hemoglobin nucleation. J. Mol. Biol. 256, 219–222 (1996).

    CAS  PubMed  Google Scholar 

  36. Hofrichter, J. Kinetics of sickle hemoglobin polymerization. III. Nucleation rates determined from stochastic fluctuations in polymerization progress curves. J. Mol. Biol. 189, 553–571 (1986).

    CAS  PubMed  Google Scholar 

  37. Ferrone, F.A., Hofrichter, J., Sunshine, H.R. & Eaton, W.A. Kinetic studies on photolysis-induced gelation of sickle cell hemoglobin suggest a new mechanism. Biophys. J. 32, 361–380 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Christoph, G.W., Hofrichter, J. & Eaton, W.A. Understanding the shape of sickled red cells. Biophys. J. 88, 1371–1376 (2005).

    CAS  PubMed  Google Scholar 

  39. Bishop, M.F. & Ferrone, F.A. Kinetics of nucleation-controlled polymerization: a perturbation treatment for use with a secondary pathway. Biophys. J. 46, 631–644 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Weng, W., Aprelev, A., Briehl, R.W. & Ferrone, F.A. Universal metastability of sickle hemoglobin polymerization. J. Mol. Biol. 377, 1228–1235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ferrone, F.A., Ivanova, M. & Jasuja, R. Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach. Biophys. J. 82, 399–406 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao, Z. & Ferrone, F.A. Homogeneous nucleation in sickle hemoglobin: stochastic measurements with a parallel method. Biophys. J. 72, 343–352 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yosmanovich, D., Rotter, M., Aprelev, A. & Ferrone, F.A. Calibrating sickle cell disease. J. Mol. Biol. (in the press).

  44. Sunshine, H.R., Hofrichter, J., Ferrone, F.A. & Eaton, W.A. Oxygen binding by sickle cell hemoglobin polymers. J. Mol. Biol. 158, 251–273 (1982).

    CAS  PubMed  Google Scholar 

  45. Henry, E.R. et al. Experiments on hemoglobin in single crystals and silica gels distinguish among theoretical allosteric models. Biophys. J. 109, 1264–1272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Szabo, E. Henry and J. Hofrichter for discussions and M. Clore for helpful comments on the manuscript. Work by T.C. and W.A.E. was supported by the intramural research program of NIDDK, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

T.C., F.A.F. and W.A.E. performed the calculations, analyzed the data and wrote the paper.

Corresponding author

Correspondence to William A Eaton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Data for Figure 1 of main text (XLS 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cellmer, T., Ferrone, F. & Eaton, W. Universality of supersaturation in protein-fiber formation. Nat Struct Mol Biol 23, 459–461 (2016). https://doi.org/10.1038/nsmb.3197

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing