Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

N6-methyladenosine–encoded epitranscriptomics

Abstract

N6-methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA. Recent discoveries of the locations, functions and mechanisms of m6A have shed light on a new layer of gene regulation at the RNA level, giving rise to the field of m6A epitranscriptomics. In this Perspective, we provide an update on the various effects of mammalian m6A modification, which affects many different stages of the RNA life cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: m6A epitranscriptomics: writers, erasers and readers.
Figure 2: m6A switches.
Figure 3: m6A-regulated RNA metabolism in mammalian cells.

Similar content being viewed by others

References

  1. Bokar, J.A. in Fine-Tuning of RNA Functions by Modification and Editing 141–177 (Springer, 2005).

  2. Carlile, T.M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  3. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).Together with ref. 4, developed the first high-throughput method to map m6A sites across the mammalian transcriptome.

    Article  CAS  Google Scholar 

  4. Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).Together with ref. 3, mapped m6A sites across the mammalian transcriptome.

    Article  CAS  PubMed Central  Google Scholar 

  5. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  6. Squires, J.E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  7. Slotkin, W. & Nishikura, K. Adenosine-to-inosine RNA editing and human disease. Genome Med. 5, 105–117 (2013).

    Article  PubMed Central  Google Scholar 

  8. Desrosiers, R., Friderici, K. & Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 71, 3971–3975 (1974).

    Article  CAS  Google Scholar 

  9. Rottman, F., Shatkin, A.J. & Perry, R.P. Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: possible implications for processing. Cell 3, 197–199 (1974).

    Article  CAS  Google Scholar 

  10. Jia, G. et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011).Identified FTO as an m6A eraser, thus indicating that m6A modification is reversible.

    Article  CAS  PubMed Central  Google Scholar 

  11. Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  12. Chen, K. et al. High-resolution N6-methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Edn Engl. 54, 1587–1590 (2015).

    Article  CAS  Google Scholar 

  13. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  14. Ke, S. et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 29, 2037–2053 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  15. Wei, C.M. & Moss, B. Nucleotide sequences at the N6-methyladenosine sites of HeLa cell messenger ribonucleic acid. Biochemistry 16, 1672–1676 (1977).

    Article  CAS  Google Scholar 

  16. Csepany, T., Lin, A., Baldick, C.J. Jr. & Beemon, K. Sequence specificity of mRNA N6-adenosine methyltransferase. J. Biol. Chem. 265, 20117–20122 (1990).

    CAS  PubMed  Google Scholar 

  17. Harper, J.E., Miceli, S.M., Roberts, R.J. & Manley, J.L. Sequence specificity of the human mRNA N6-adenosine methylase in vitro. Nucleic Acids Res. 18, 5735–5741 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  18. Carroll, S.M., Narayan, P. & Rottman, F.M. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol. Cell. Biol. 10, 4456–4465 (1990).

    Article  CAS  PubMed Central  Google Scholar 

  19. Kane, S.E. & Beemon, K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell. Biol. 5, 2298–2306 (1985).

    Article  CAS  PubMed Central  Google Scholar 

  20. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).Probed the m6A status at single-nucleotide resolution and revealed fractional m6A modification in mRNA and lncRNA.

    Article  CAS  PubMed Central  Google Scholar 

  21. Yue, Y., Liu, J. & He, C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 29, 1343–1355 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  22. Fu, Y., Dominissini, D., Rechavi, G. & He, C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 15, 293–306 (2014).

    Article  CAS  Google Scholar 

  23. Meyer, K.D. & Jaffrey, S.R. The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat. Rev. Mol. Cell Biol. 15, 313–326 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  24. Liu, N. & Pan, T. RNA epigenetics. Transl. Res. 165, 28–35 (2015).

    Article  CAS  Google Scholar 

  25. Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P. & Rottman, F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei: internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269, 17697–17704 (1994).

    CAS  PubMed  Google Scholar 

  26. Liu, J. et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol. 10, 93–95 (2014).

    Article  CAS  Google Scholar 

  27. Wang, Y. et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 16, 191–198 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  28. Zhong, S. et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell 20, 1278–1288 (2008).

    Article  CAS  PubMed Central  Google Scholar 

  29. Schwartz, S. et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Reports 8, 284–296 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  30. Ping, X.-L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  31. Lamond, A.I. & Spector, D.L. Nuclear speckles: a model for nuclear organelles. Nat. Rev. Mol. Cell Biol. 4, 605–612 (2003).

    Article  CAS  Google Scholar 

  32. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    Article  CAS  Google Scholar 

  33. Loos, R.J. & Bouchard, C. FTO: the first gene contributing to common forms of human obesity. Obes. Rev. 9, 246–250 (2008).

    Article  CAS  Google Scholar 

  34. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  35. Fu, Y. et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat. Commun. 4, 1798 (2013).

    Article  PubMed Central  Google Scholar 

  36. Schwartz, J.C., Wang, X., Podell, E.R. & Cech, T.R. RNA seeds higher-order assembly of FUS protein. Cell Reports 5, 918–925 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  37. Chen, T. et al. m6A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell 16, 289–301 (2015).Demonstrated that miRNAs guide METTL3 and facilitate m6A methylation.

    Article  CAS  Google Scholar 

  38. Zhou, J. et al. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526, 591–594 (2015).Demonstrated stress-inducible m6A methylation and showed that m6A promotes cap-independent mRNA translation.

    Article  CAS  PubMed Central  Google Scholar 

  39. Wang, X. et al. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161, 1388–1399 (2015).Demonstrated that m6A-mediated recruitment of YTHDF1 promotes cap-dependent mRNA translation.

    Article  CAS  PubMed Central  Google Scholar 

  40. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).Demonstrated that m6A-mediated recruitment of YTHDF2 promotes mRNA decay in P bodies.

    Article  Google Scholar 

  41. Xu, C. et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol. 10, 927–929 (2014).

    Article  CAS  Google Scholar 

  42. Theler, D., Dominguez, C., Blatter, M., Boudet, J. & Allain, F.H. Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Res. 42, 13911–13919 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  43. Li, F., Zhao, D., Wu, J. & Shi, Y. Structure of the YTH domain of human YTHDF2 in complex with an m6A mononucleotide reveals an aromatic cage for m6A recognition. Cell Res. 24, 1490–1492 (2014).

    Article  PubMed Central  Google Scholar 

  44. Luo, S. & Tong, L. Molecular basis for the recognition of methylated adenines in RNA by the eukaryotic YTH domain. Proc. Natl. Acad. Sci. USA 111, 13834–13839 (2014).

    Article  CAS  Google Scholar 

  45. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).Described a low-complexity sequence in proteins that promotes RNA-granule formation and identified proteins associated with RNA granules.

    Article  CAS  PubMed Central  Google Scholar 

  46. Ramaswami, M., Taylor, J.P. & Parker, R. Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154, 727–736 (2013).

    Article  CAS  Google Scholar 

  47. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  48. Kierzek, E. & Kierzek, R. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 31, 4472–4480 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  49. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  50. Sternglanz, H. & Bugg, C.E. Conformation of N6-methyladenine, a base involved in DNA modification: restriction processes. Science 182, 833–834 (1973).

    Article  CAS  Google Scholar 

  51. Spitale, R.C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).Demonstrated m6A-mediated destabilization of local RNA structure across the transcriptome.

    Article  CAS  PubMed Central  Google Scholar 

  52. Liu, N. et al. N6-methyladenosine-dependent RNA structural switches regulate RNA–protein interactions. Nature 518, 560–564 (2015).Discovered an m6A-switch mechanism regulating RNA-HNRNPC interactions and m6A-mediated pre-mRNA processing.

    Article  CAS  PubMed Central  Google Scholar 

  53. Zhou, K.I. et al. N(6)-Methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J. Mol. Biol. doi:10.1016/j.jmb.2015.08.021 (4 September 2015).

  54. König, J. et al. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  PubMed Central  Google Scholar 

  55. McCloskey, A., Taniguchi, I., Shinmyozu, K. & Ohno, M. hnRNP C tetramer measures RNA length to classify RNA polymerase II transcripts for export. Science 335, 1643–1646 (2012).

    Article  CAS  Google Scholar 

  56. Rajagopalan, L.E., Westmark, C.J., Jarzembowski, J.A. & Malter, J.S. hnRNP C increases amyloid precursor protein (APP) production by stabilizing APP mRNA. Nucleic Acids Res. 26, 3418–3423 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  57. Zarnack, K. et al. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell 152, 453–466 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  58. Alarcón, C.R., Lee, H., Goodarzi, H., Halberg, N. & Tavazoie, S.F. N6-methyladenosine marks primary microRNAs for processing. Nature 519, 482–485 (2015).Demonstrated the effects of m6A on miRNA biogenesis.

    Article  PubMed Central  Google Scholar 

  59. Alarcón, C.R. et al. HNRNPA2B1 is a mediator of m6A-dependent nuclear RNA processing events. Cell 162, 1299–1308 (2015).

    Article  PubMed Central  Google Scholar 

  60. Meyer, K.D. et al. 5′ UTR m6A promotes cap-independent translation. Cell 163, 999–1010 (2015).Together with ref. 38, demonstrated that m6A promotes cap-independent mRNA translation.

    Article  CAS  PubMed Central  Google Scholar 

  61. Hinnebusch, A.G. The scanning mechanism of eukaryotic translation initiation. Annu. Rev. Biochem. 83, 779–812 (2014).

    Article  CAS  Google Scholar 

  62. Choi, J. et al. N6-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat. Struct. Mol. Biol. doi:10.1038/nsmb.3148 (11 January 2016). Demonstrated the effects of m6A on translation dynamics.

  63. Batista, P.J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    Article  CAS  PubMed Central  Google Scholar 

  64. Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    Article  CAS  Google Scholar 

  65. Fustin, J.-M. et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155, 793–806 (2013).

    Article  CAS  Google Scholar 

  66. Gerken, T. et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318, 1469–1472 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  67. Fischer, J. et al. Inactivation of the Fto gene protects from obesity. Nature 458, 894–898 (2009).

    Article  CAS  Google Scholar 

  68. Hongay, C.F. & Orr-Weaver, T.L. Drosophila inducer of meiosis 4 (IME4) is required for Notch signaling during oogenesis. Proc. Natl. Acad. Sci. USA 108, 14855–14860 (2011).

    Article  CAS  Google Scholar 

  69. Agarwala, S.D., Blitzblau, H.G., Hochwagen, A. & Fink, G.R. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 8, e1002732 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  70. Bodi, Z. et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3′ end and reduced levels cause developmental defects. Front. Plant Sci. 3, 48–57 (2012).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research on RNA modifications in the laboratory of T.P. is supported by the US National Institutes of Health (EUREKA R01GM88599 and R01GM113194).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian Liu or Tao Pan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Pan, T. N6-methyladenosine–encoded epitranscriptomics. Nat Struct Mol Biol 23, 98–102 (2016). https://doi.org/10.1038/nsmb.3162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing