Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of template-boundary definition in Tetrahymena telomerase

Abstract

Telomerase is required to maintain repetitive G-rich telomeric DNA sequences at chromosome ends. To do so, the telomerase reverse transcriptase (TERT) subunit reiteratively uses a small region of the integral telomerase RNA (TER) as a template. An essential feature of telomerase catalysis is the strict definition of the template boundary to determine the precise TER nucleotides to be reverse transcribed by TERT. We report the 3-Å crystal structure of the Tetrahymena TERT RNA-binding domain (tTRBD) bound to the template boundary element (TBE) of TER. tTRBD is wedged into the base of the TBE RNA stem-loop, and each of the flanking RNA strands wraps around opposite sides of the protein domain. The structure illustrates how the tTRBD establishes the template boundary by positioning the TBE at the correct distance from the TERT active site to prohibit copying of nontemplate nucleotides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T. thermophila telomerase composition and catalytic cycle.
Figure 2: Structure of the tTRBD–TBE complex.
Figure 3: Protein-protein interactions between conserved tTERT RBD motifs.
Figure 4: Protein-RNA interactions within the tTRBD–TBE complex.
Figure 5: Conservation and function of observed interactions in the tTRBD–TBE complex.
Figure 6: Structural model of T. thermophila telomerase RNA-template connectivity to the TER TBE.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Palm, W. & de Lange, T. How shelterin protects mammalian telomeres. Annu. Rev. Genet. 42, 301–334 (2008).

    Article  CAS  Google Scholar 

  2. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).

    Article  CAS  Google Scholar 

  3. Greider, C.W. & Blackburn, E.H. The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898 (1987).

    Article  CAS  Google Scholar 

  4. Vulliamy, T.J. & Dokal, I. Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90, 122–130 (2008).

    Article  CAS  Google Scholar 

  5. Kim, N.W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015 (1994).

    Article  CAS  Google Scholar 

  6. Licht, J.D. & Collins, K. Telomerase RNA function in recombinant Tetrahymena telomerase. Genes Dev. 13, 1116–1125 (1999).

    Article  CAS  Google Scholar 

  7. Greider, C.W. & Blackburn, E.H. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337, 331–337 (1989).

    Article  CAS  Google Scholar 

  8. Lue, N.F. A physical and functional constituent of telomerase anchor site. J. Biol. Chem. 280, 26586–26591 (2005).

    Article  CAS  Google Scholar 

  9. Romi, E. et al. High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase. Proc. Natl. Acad. Sci. USA 104, 8791–8796 (2007).

    Article  CAS  Google Scholar 

  10. Zaug, A.J., Podell, E.R. & Cech, T.R. Mutation in TERT separates processivity from anchor-site function. Nat. Struct. Mol. Biol. 15, 870–872 (2008).

    Article  CAS  Google Scholar 

  11. Mitchell, M., Gillis, A., Futahashi, M., Fujiwara, H. & Skordalakes, E. Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA. Nat. Struct. Mol. Biol. 17, 513–518 (2010).

    Article  CAS  Google Scholar 

  12. Parks, J.W. & Stone, M.D. Coordinated DNA dynamics during the human telomerase catalytic cycle. Nat. Commun. 5, 4146 (2014).

    Article  CAS  Google Scholar 

  13. Berman, A.J., Akiyama, B.M., Stone, M.D. & Cech, T.R. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat. Struct. Mol. Biol. 18, 1371–1375 (2011).

    Article  CAS  Google Scholar 

  14. O'Connor, C.M., Lai, C.K. & Collins, K. Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J. Biol. Chem. 280, 17533–17539 (2005).

    Article  CAS  Google Scholar 

  15. Jacobs, S.A., Podell, E.R. & Cech, T.R. Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat. Struct. Mol. Biol. 13, 218–225 (2006).

    Article  CAS  Google Scholar 

  16. Akiyama, B.M., Parks, J.W. & Stone, M.D. The telomerase essential N-terminal domain promotes DNA synthesis by stabilizing short RNA-DNA hybrids. Nucleic Acids Res. 43, 5537–5549 (2015).

    Article  CAS  Google Scholar 

  17. Bryan, T.M., Goodrich, K.J. & Cech, T.R. Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol. Cell 6, 493–499 (2000).

    Article  CAS  Google Scholar 

  18. Lai, C.K., Mitchell, J.R. & Collins, K. RNA binding domain of telomerase reverse transcriptase. Mol. Cell. Biol. 21, 990–1000 (2001).

    Article  CAS  Google Scholar 

  19. Theimer, C.A. & Feigon, J. Structure and function of telomerase RNA. Curr. Opin. Struct. Biol. 16, 307–318 (2006).

    Article  CAS  Google Scholar 

  20. Lai, C.K., Miller, M.C. & Collins, K. Template boundary definition in Tetrahymena telomerase. Genes Dev. 16, 415–420 (2002).

    Article  CAS  Google Scholar 

  21. Akiyama, B.M., Gomez, A. & Stone, M.D. A conserved motif in Tetrahymena thermophila telomerase reverse transcriptase is proximal to the RNA template and is essential for boundary definition. J. Biol. Chem. 288, 22141–22149 (2013).

    Article  CAS  Google Scholar 

  22. Miller, M.C., Liu, J.K. & Collins, K. Template definition by Tetrahymena telomerase reverse transcriptase. EMBO J. 19, 4412–4422 (2000).

    Article  CAS  Google Scholar 

  23. Rouda, S. & Skordalakes, E. Structure of the RNA-binding domain of telomerase: implications for RNA recognition and binding. Structure 15, 1403–1412 (2007).

    Article  CAS  Google Scholar 

  24. Gillis, A.J., Schuller, A.P. & Skordalakes, E. Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455, 633–637 (2008).

    Article  CAS  Google Scholar 

  25. Harkisheimer, M., Mason, M., Shuvaeva, E. & Skordalakes, E. A motif in the vertebrate telomerase N-terminal linker of TERT contributes to RNA binding and telomerase activity and processivity. Structure 21, 1870–1878 (2013).

    Article  CAS  Google Scholar 

  26. Huang, J. et al. Structural basis for protein-RNA recognition in telomerase. Nat. Struct. Mol. Biol. 21, 507–512 (2014).

    Article  CAS  Google Scholar 

  27. McCormick-Graham, M. & Romero, D.P. Ciliate telomerase RNA structural features. Nucleic Acids Res. 23, 1091–1097 (1995).

    Article  CAS  Google Scholar 

  28. Cunningham, D.D. & Collins, K. Biological and biochemical functions of RNA in the Tetrahymena telomerase holoenzyme. Mol. Cell. Biol. 25, 4442–4454 (2005).

    Article  CAS  Google Scholar 

  29. Richards, R.J., Theimer, C.A., Finger, L.D. & Feigon, J. Structure of the Tetrahymena thermophila telomerase RNA helix II template boundary element. Nucleic Acids Res. 34, 816–825 (2006).

    Article  CAS  Google Scholar 

  30. Jiang, J. et al. The architecture of Tetrahymena telomerase holoenzyme. Nature 496, 187–192 (2013).

    Article  CAS  Google Scholar 

  31. Chen, J.L. & Greider, C.W. Template boundary definition in mammalian telomerase. Genes Dev. 17, 2747–2752 (2003).

    Article  CAS  Google Scholar 

  32. Brown, A.F. et al. A self-regulating template in human telomerase. Proc. Natl. Acad. Sci. USA 111, 11311–11316 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the laboratory of K. Collins (University of California, Berkeley) for the original tTRBD expression plasmids. We thank L. Lancaster and S. Tripathy for technical help with crystallization and data analysis. We thank H. Noller, W. Scott, and members of S. Rubin's laboratory for helpful discussions and technical advice. This work was supported by grants from the US National Institutes of Health (2T32GM008646-16 to L.I.J.) and (RO1GM095850 to M.D.S.)

Author information

Authors and Affiliations

Authors

Contributions

L.I.J., B.M.A., A.O., C.L., S.M.R. and M.D.S. designed the experiments. L.I.J., B.M.A., S.M.R. and M.D.S. wrote the manuscript.

Corresponding author

Correspondence to Michael D Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Cross-species TERT RBD sequence alignments.

The ciliate-specific CP2 motif is shown for Tetrahymena only (purple). The conserved CP- and T-motifs are shown in orange and blue, respectively.

Supplementary Figure 2 Ciliate TERT RBD sequence alignments.

The ciliate specific CP2 motif is shown in purple. The conserved CP- and T-motifs are shown in orange and blue, respectively.

Supplementary Figure 3 RNA binding activity of new tTRBD protein construct.

(a) Electrophoretic Mobility Shift Assay (EMSA) of wild type (WT) TER (left panel) and A22U TER (right panel) bound to RBD. (b) Primer extension assay of WT and A22U TER in the presence or absence of dATP. Numbers on the left indicate number of nucleotides extended of the primer. A defect in template boundary definition would be expected to arise in the presence of ATP since TER nucleotide U42 would enter the TERT active site as has been shown previously (Lai, C.K. et al., Genes Dev. 16, 415-20, 2002) (Akiyama, B.M. et al., J Biol Chem. 288, 22141-9, 2013). (c) FPLC elution profiles of the TBE RNA construct alone (top panel) and of the tTRBD-TBE complex (bottom panel). Red and black lines indicate absorbance measured at 260nm and 280nm, respectively. The tTRBD-TBE complex elutes as a single peak around 15.5 ml and free TBE RNA elutes around 17.4 ml. The samples were run through a superdex 200 column.

Supplementary Figure 4 Crystal-packing arrangement of the tTRBD–TBE RNA complex.

(a) There are two protein-RNA complexes in the asymmetric unit. Complex A (light green, cyan and black) is better fit to the electron density than complex B (dark green, teal and grey) and is therefore the molecule chosen for structure determination. (b) Crystal contacts are mediated by RNA-RNA base stacking between complex B and complex A of the neighboring asymmetric unit. This interaction is further highlighted in c (dashed red box). (c) Base stacking interactions between complex B and complex A of the neighboring asymmetric unit. Residues A40 and U41 of complex B are twisted outward compared to the same residues in complex A to mediate crystal contacts with the distal region of stem II of complex A.

Supplementary Figure 5 Comparison of TER secondary structure.

The left panel shows the secondary structure of TBE-Stem II as determined previously (McCormick-Graham, M. et al., Nucleic Acids Res. 23, 1091-7, 1995). The right panel shows the updated TER secondary structure based on the observations of the RNA density in our structure.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1425 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jansson, L., Akiyama, B., Ooms, A. et al. Structural basis of template-boundary definition in Tetrahymena telomerase. Nat Struct Mol Biol 22, 883–888 (2015). https://doi.org/10.1038/nsmb.3101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing