Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structures of the PsbS protein essential for photoprotection in plants

Abstract

The photosystem II protein PsbS has an essential role in qE-type nonphotochemical quenching, which protects plants from photodamage under excess light conditions. qE is initiated by activation of PsbS by low pH, but the mechanism of PsbS action remains elusive. Here we report the low-pH crystal structures of PsbS from spinach in its free form and in complex with the qE inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), revealing that PsbS adopts a unique folding pattern, and, unlike other members of the light-harvesting-complex superfamily, it is a noncanonical pigment-binding protein. Structural and biochemical evidence shows that both active and inactive PsbS form homodimers in the thylakoid membranes, and DCCD binding disrupts the lumenal intermolecular hydrogen bonds of the active PsbS dimer. Activation of PsbS by low pH during qE may involve a conformational change associated with altered lumenal intermolecular interactions of the PsbS dimer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of PsbS.
Figure 2: Structural comparison between PsbS and LHCII.
Figure 3: PsbS is not an LHCII-like pigment-binding protein.
Figure 4: Structure of low-pH PsbS dimer.
Figure 5: The low-pH PsbS dimer is physiologically relevant.
Figure 6: PsbS dimer at neutral pH.
Figure 7: DCCD-modified PsbS.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Caffarri, S., Kouřil, R., Kereïche, S., Boekema, E.J. & Croce, R. Functional architecture of higher plant photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Demmig-Adams, B. & Adams, W.W. III. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 599–626 (1992).

    Article  CAS  Google Scholar 

  3. Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Horton, P., Ruban, A.V. & Walters, R.G. Regulation of light harvesting in green plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Müller, P., Li, X.-P. & Niyogi, K.K. Non-photochemical quenching: a response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Bianchi, S., Ballottari, M., Dall'osto, L. & Bassi, R. Regulation of plant light harvesting by thermal dissipation of excess energy. Biochem. Soc. Trans. 38, 651–660 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Külheim, C., Ågren, J. & Jansson, S. Rapid regulation of light harvesting and plant fitness in the field. Science 297, 91–93 (2002).

    Article  PubMed  Google Scholar 

  8. Ruban, A.V., Johnson, M.P. & Duffy, C.D.P. The photoprotective molecular switch in the photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Rochaix, J.D. Regulation and dynamics of the light-harvesting system. Annu. Rev. Plant Biol. 65, 287–309 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kramer, D.M., Sacksteder, C.A. & Cruz, J.A. How acidic is the lumen? Photosynth. Res. 60, 151–163 (1999).

    Article  CAS  Google Scholar 

  11. Demmig-Adams, B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020, 1–24 (1990).

    Article  CAS  Google Scholar 

  12. Ruban, A.V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Ahn, T.K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Bode, S. et al. On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc. Natl. Acad. Sci. USA 106, 12311–12316 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, X.-P. et al. A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Kasajima, I. et al. Molecular distinction in genetic regulation of nonphotochemical quenching in rice. Proc. Natl. Acad. Sci. USA 108, 13835–13840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brooks, M.D., Jansson, S. & Niyogi, K.K. in Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria Vol. 40 (eds. Demmig-Adams, B., Garab, G., Adams, W.W. III & Govindjee, U.o.I.) 297–314 (Springer, 2014).

  18. Li, X.-P., Gilmore, A.M. & Niyogi, K.K. Molecular and global time-resolved analysis of a psbS gene dosage effect on pH- and xanthophyll cycle-dependent nonphotochemical quenching in photosystem II. J. Biol. Chem. 277, 33590–33597 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Li, X.-P., Müller-Moulé, P., Gilmore, A.M. & Niyogi, K.K. PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc. Natl. Acad. Sci. USA 99, 15222–15227 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barros, T. & Kühlbrandt, W. Crystallisation, structure and function of plant light-harvesting complex II. Biochim. Biophys. Acta 1787, 753–772 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Funk, C., Schroder, W.P., Green, B.R., Renger, G. & Andersson, B. The intrinsic 22 kDa protein is a chlorophyll-binding subunit of photosystem II. FEBS Lett. 342, 261–266 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Funk, C. et al. The PSII-S protein of higher plants: a new type of pigment-binding protein. Biochemistry 34, 11133–11141 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Aspinall-O'Dea, M. et al. In vitro reconstitution of the activated zeaxanthin state associated with energy dissipation in plants. Proc. Natl. Acad. Sci. USA 99, 16331–16335 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Niyogi, K.K., Li, X.-P., Rosenberg, V. & Jung, H.S. Is PsbS the site of non-photochemical quenching in photosynthesis? J. Exp. Bot. 56, 375–382 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Dominici, P. et al. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J. Biol. Chem. 277, 22750–22758 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Bonente, G., Howes, B.D., Caffarri, S., Smulevich, G. & Bassi, R. Interactions between the photosystem II subunit PsbS and xanthophylls studied in vivo and in vitro. J. Biol. Chem. 283, 8434–8445 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, X.-P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Bergantino, E. et al. Light- and pH-dependent structural changes in the PsbS subunit of photosystem II. Proc. Natl. Acad. Sci. USA 100, 15265–15270 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Johnson, M.P. & Ruban, A.V. Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J. 61, 283–289 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, M.P. & Ruban, A.V. Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced ΔpH. J. Biol. Chem. 286, 19973–19981 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Horton, P. et al. PS2001 Proc. 12th International Congress on Photosynthesis PL-003 (CSIRO Publishing, Melbourne, Australia, 2001).

  32. Li, X.-P., Phippard, A., Pasari, J. & Niyogi, K.K. Structure-function analysis of photosystem II subunit S (PsbS) in vivo. Funct. Plant Biol. 29, 1131–1139 (2002).

    Article  PubMed  Google Scholar 

  33. Schultes, N.P. & Peterson, R.B. Phylogeny-directed structural analysis of the Arabidopsis PsbS protein. Biochem. Biophys. Res. Commun. 355, 464–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Wedel, N., Klein, R., Ljungberg, U., Andersson, B. & Herrmann, R.G. The single-copy gene psbS codes for a phylogenetically intriguing 22 kDa polypeptide of photosystem II. FEBS Lett. 314, 61–66 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, S. et al. Characterization of a spinach psbS cDNA encoding the 22 kDa protein of photosystem II. FEBS Lett. 314, 67–71 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Jansson, S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 4, 236–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Liu, Z. et al. Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Pan, X. et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 18, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Amunts, A., Toporik, H., Borovikova, A. & Nelson, N. Structure determination and improved model of plant photosystem I. J. Biol. Chem. 285, 3478–3486 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Pan, X., Liu, Z.F., Li, M. & Chang, W.R. Architecture and function of plant light-harvesting complexes II. Curr. Opin. Struct. Biol. 23, 515–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Funk, C., Adamska, I., Green, B.R., Andersson, B. & Renger, G. The nuclear-encoded chlorophyll-binding photosystem II-S protein is stable in the absence of pigments. J. Biol. Chem. 270, 30141–30147 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Wilk, L., Grunwald, M., Liao, P.N., Walla, P.J. & Kühlbrandt, W. Direct interaction of the major light-harvesting complex II and PsbS in nonphotochemical quenching. Proc. Natl. Acad. Sci. USA 110, 5452–5456 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Plumley, F.G. & Schmidt, G.W. Reconstitution of chlorophyll a/b light-harvesting complexes: xanthophyll-dependent assembly and energy transfer. Proc. Natl. Acad. Sci. USA 84, 146–150 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Magalhaes, A., Maigret, B., Hoflack, J., Gomes, J.A.N.F. & Scheraga, H.A. Contribution of unusual arginine-arginine short-range interactions to stabilization and recognition in proteins. J. Protein Chem. 13, 195–215 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies form crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Goss, R., Opitz, C., Lepetit, B. & Wilhelm, C. The synthesis of NPQ-effective zeaxanthin depends on the presence of a transmembrane proton gradient and a slightly basic stromal side of the thylakoid membrane. Planta 228, 999–1009 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Zaks, J., Amarnath, K., Sylak-Glassman, E.J. & Fleming, G.R. Models and measurements of energy-dependent quenching. Photosynth. Res. 116, 389–409 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Azzi, A., Casey, R.P. & Nalecz, M.J. The effect of N,N′-dicyclohexylcarbodiimide on enzymes of bioenergetic relevance. Biochim. Biophys. Acta 768, 209–226 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Mizutani, K. et al. Structure of the rotor ring modified with N,N′-dicyclohexylcarbodiimide of the Na+-transporting vacuolar ATPase. Proc. Natl. Acad. Sci. USA 108, 13474–13479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pogoryelov, D. et al. Microscopic rotary mechanism of ion translocation in the F0 complex of ATP synthases. Nat. Chem. Biol. 6, 891–899 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Teardo, E. et al. Evidences for interaction of PsbS with photosynthetic complexes in maize thylakoids. Biochim. Biophys. Acta 1767, 703–711 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Johnson, M.P. et al. Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23, 1468–1479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Betterle, N. et al. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15255–15266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kiss, A.Z., Ruban, A.V. & Horton, P. The PsbS protein controls the organization of the photosystem II antenna in higher plant thylakoid membranes. J. Biol. Chem. 283, 3972–3978 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Kereïche, S., Kiss, A.Z., Kouril, R., Boekema, E.J. & Horton, P. The PsbS protein controls the macro-organisation of photosystem II complexes in the grana membranes of higher plant chloroplasts. FEBS Lett. 584, 759–764 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. Goral, T.K. et al. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J. 69, 289–301 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Sylak-Glassman, E.J. et al. Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proc. Natl. Acad. Sci. USA 111, 17498–17503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berthold, D.A., Babcock, G.T. & Yocum, C.F. A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. FEBS Lett. 134, 231–234 (1981).

    Article  CAS  Google Scholar 

  59. Mishra, R.K. & Ghanotakis, D.F. Selective extraction of CP26 and CP29 proteins without affecting the binding of the extrinsic protein (33, 23 and 17 kDa) and the DCMU sensitivity of a photosystem II core complex. Photosynth. Res. 42, 37–42 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  61. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  65. Laskowski, R.A., Macarthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  66. Joly, D. & Carpentier, R. in Photosynthesis Research Protocols, Methods in Molecular Biology Vol. 684 (ed. Carpentier, R.) 321–325 (Springer, 2011).

  67. Farber, A., Young, A.J., Ruban, A.V., Horton, P. & Jahns, P. Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants: the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching. Plant Physiol. 115, 1609–1618 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Bassi (Dipartimento di Biotecnologie, Università di Verona) for discussion, manuscript reading and providing seeds of npq4-E122Q E226Q double-mutant Arabidopsis, and N. Isaacs, K.K. Niyogi and J. Barber for manuscript reading. We are grateful to the staff at the Shanghai Synchrotron Radiation Facility and the Photo Factory for technical support. This work was supported by grants 2011CBA00902 (to W.C.) and 2011CBA00903 (to Z.L.) from the National Key Basic Research Program of China; grant XDB08020302 (to W.C.) from the Strategic Priority Research Program of the Chinese Academy of Sciences; and grants 31021062 (to W.C.), 31270793 (to M.L.), 31170703 (to X.P.), and 31100534 (to P.C.) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Contributions

M.F., M.L. and W.C. conceived the project. M.F. purified PsbS and performed the structural determination and the biochemical experiments with PsbS. P.C., M.L. and H.Z. assisted with data collection. X.Z. and J.Z. assisted with isolation of BBY membranes. X.P. assisted with HPLC experiments. M.F., M.L., Z.L. and W.C. discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Mei Li or Wenrui Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Sequence alignment of PsbS from different plants.

The species used for alignment are Spinacia oleracea, Arabidopsis thaliana, Oryza sativa, Zea mays, Hordeum vulgare, Populus trichocarpa, Pinus sitchensis, Selaginella moellendorffii, and Physcomitrella patens. The secondary structure of PsbS is shown above the sequence. Fully conserved residues are shaded in red. The residues mediating dimerization are marked with circles (hydrogen bond interactions) and triangles (hydrophobic interactions). The two pH-sensing glutamates are marked with squares.

Supplementary Figure 2 The purified PsbS protein sample contains chlorophylls.

(a) Size exclusion chromatography result showed that the chlorophyll molecules co-elute with PsbS from a gel filtration column. PsbS and chlorophyll were monitored by the absorption at 280 nm (A280) and 663 nm (A663), respectively.

(b) HPLC analysis of the pigments in the purified PsbS protein sample. The identification of Chl a and Chl b was based on the absorption spectra of each peak fraction.

Supplementary Figure 3 The packing mode of PsbS crystal.

(a) The packing of PsbS molecules within one layer in the crystal is mediated by hydrophobic interactions between the transmembrane helices of PsbS.

(b) The packing of PsbS molecules between layers in the crystal is mediated by hydrophilic interactions between the lumenal part and the N-terminal part of PsbS. One of the contact sites is indicated by a red ellipse.

Supplementary Figure 4 Structural explanation of previous mutation studies on PsbS.

(a) In Arabidopsis, the two ethylmethane sulfonate (EMS)-induced mutations G84D and G150E (equivalent to Gly31 and Gly97 in spinach) were reported to significantly affect the stability of PsbS (Li, X.-P. et al., Funct. Plant Biol. 29, 1131–1139, 2002). In the structure, we find that both Gly31 and Gly97 are located in the region where extensive hydrogen bonds are formed and stabilize the stromal conformation of PsbS. Mutations of them to large and charged residues will disrupt these interactions.

(b,c) In Arabidopsis, the mutations of the two salt bridges connecting TM1 and TM3 were reported to significantly affect the function of PsbS in qE but not its expression without reasonable explanation (Schultes, N.P. & Peterson, R.B. Biochem. Biophys. Res. Comm. 355, 464–470, 2007). Our structural analysis have revealed that PsbS cannot bind chlorophyll molecules here; therefore, the most probable explanation is that these mutations (E to V and R to L) disrupt surrounding hydrogen bonds and affect local conformations. The more hydrogen bonds around the second salt bridge (Arg42–Glu141) are consistent with the bigger effect of its mutation. The above-mentioned residues are shown as yellow sticks, and the other involved residues are shown in white.

Supplementary Figure 5 The potential chlorophyll molecule bound to PsbS.

(a) A picture of green PsbS crystals.

(b) HPLC analysis of the pigments in the PsbS crystals.

(c) The Chl a molecule is bound at the lumenal dimerization interface of PsbS dimer. The 2Fo – Fc (0.8σ level) electron density of the Chl a molecule is shown. The two PsbS monomers are shown in limon and palecyan, respectively. The surrounding non-polar residues interacting with the Chl a molecule are shown in stick. For clarity, the phytyl chain of the Chl a molecule is not shown.

(d) Comparison of the absorption spectra of the purified PsbS protein and free Chl a.

(e) Comparison of the circular dichroism (CD) spectra of the purified PsbS and LHCII proteins.

Supplementary Figure 6 PsbS is dimeric in both its active and inactive states in Arabidopsis.

Crosslinking of PsbS using the thylakoids of wild-type (a) and pH-insensitive npq4-E122Q E226Q double mutant (b) of Arabidopsis at pH 5.0 with EDC. Under low pH or high light conditions, wild-type PsbS is in its active state, but pH-insensitive PsbS mutant is still in its inactive state.

Supplementary Figure 7 The DCCD-binding property of the purified PsbS protein.

(a) Mass spectrometric determination of the molecular weight of native PsbS. The subtilisin-treated PsbS (SU-PsbS) lacking N-terminal five residues (for crystallization) was used in mass spectrometric analysis. The experimental molecular weight (21923.36) of SU-PsbS is very close to the sequence-based molecular weight (21922.5) of SU-PsbS.

(b) Mass spectrometric analysis of DCCD-incubated SU-PsbS. Considering that DCCD (206.33) is covalently bound to SU-PsbS without molecular weight loss, the three peaks (22129.94, 22336.32, 22542.57) presented in the mass spectrometric result should correspond to SU-PsbS plus one DCCD, SU-PsbS plus two DCCD, and SU-PsbS plus three DCCD, respectively. The last peak is very small and may be because of the binding of DCCD to Glu69, Glu173 and another lumenal acidic residue of PsbS.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1352 kb)

Supplementary Data Set 1

Original gel and immunoblot images (PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Li, M., Liu, Z. et al. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat Struct Mol Biol 22, 729–735 (2015). https://doi.org/10.1038/nsmb.3068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing