Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The active site of O-GlcNAc transferase imposes constraints on substrate sequence

An Author Correction to this article was published on 03 March 2023

This article has been updated

Abstract

O-GlcNAc transferase (OGT) glycosylates a diverse range of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc), an essential and dynamic post-translational modification in metazoans. Although this enzyme modifies hundreds of proteins with O-GlcNAc, it is not understood how OGT achieves substrate specificity. In this study, we describe the application of a high-throughput OGT assay to a library of peptides. We mapped sites of O-GlcNAc modification by electron transfer dissociation MS and found that they correlate with previously detected O-GlcNAc sites. Crystal structures of four acceptor peptides in complex with Homo sapiens OGT suggest that a combination of size and conformational restriction defines sequence specificity in the −3 to +2 subsites. This work reveals that although the N-terminal TPR repeats of OGT may have roles in substrate recognition, the sequence restriction imposed by the peptide-binding site makes a substantial contribution to O-GlcNAc site specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OGT shows substrate selectivity at the peptide level.
Figure 2: OGT modifies specific sites on peptide substrates.
Figure 3: Substrate peptides bind the active site of OGT with similar conformations in the −3 to +2 subsites.
Figure 4: OGT hexapeptide sequon derived from the peptide-library hits.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

References

  1. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. O'Donnell, N., Zachara, N.E., Hart, G.W. & Marth, J.D. Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol. Cell. Biol. 24, 1680–1690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Hart, G.W. et al. O-GlcNAcylation of key nuclear and cytoskeletal proteins: reciprocity with O-phosphorylation and putative roles in protein multimerization. Glycobiology 6, 711–716 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Hanover, J.A., Krause, M.W. & Love, D.C. Post-translational modifications: bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 13, 312–321 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Sinclair, D.A. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106, 13427–13432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Daou, S. et al. Crosstalk between O-GlcNAcylation and proteolytic cleavage regulates the host cell factor-1 maturation pathway. Proc. Natl. Acad. Sci. USA 108, 2747–2752 (2010).

    Article  Google Scholar 

  8. Durgan, D.J. et al. O-GlcNAcylation, novel post-translational modification linking myocardial metabolism and cardiomyocyte circadian clock. J. Biol. Chem. 286, 44606–44619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim, E.Y. et al. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26, 490–502 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Geng, F., Zhu, W., Anderson, R.A., Leber, B. & Andrews, D.W. Multiple post-translational modifications regulate E-cadherin transport during apoptosis. J. Cell Sci. 125, 2615–2625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lefebvre, T. et al. Evidence of a balance between phosphorylation and O-GlcNAc glycosylation of Tau proteins–a role in nuclear localization. Biochim. Biophys. Acta 1619, 167–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, X. et al. Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature 451, 964–969 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Pathak, S. et al. O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. EMBO J. 31, 1394–1404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rotty, J.D., Hart, G.W. & Coulombe, P.A. Stressing the role of O-GlcNAc: linking cell survival to keratin modification. Nat. Cell Biol. 12, 847–849 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Haltiwanger, R.S., Holt, G.D. & Hart, G.W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins: identification of a uridine diphospho-N-acetylglucosamine:peptide beta-N-acetylglucosaminyltransferase. J. Biol. Chem. 265, 2563–2568 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Kreppel, L.K., Blomberg, M.A. & Hart, G.W. Dynamic glycosylation of nuclear and cytosolic proteins: cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272, 9308–9315 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Dong, D.L. & Hart, G.W. Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. J. Biol. Chem. 269, 19321–19330 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Jínek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin α. Nat. Struct. Mol. Biol. 11, 1001–1007 (2004).

    Article  PubMed  Google Scholar 

  21. Clarke, A.J. et al. Structural insights into mechanism and specificity of O-GlcNAc transferase. EMBO J. 27, 2780–2788 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martinez-Fleites, C. et al. Structure of an O-GlcNAc transferase homolog provides insight into intracellular glycosylation. Nat. Struct. Mol. Biol. 15, 764–765 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iyer, S.P. & Hart, G.W. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity. J. Biol. Chem. 278, 24608–24616 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kreppel, L.K. & Hart, G.W. Regulation of a cytosolic and nuclear O-GlcNAc transferase: role of the tetratricopeptide repeats. J. Biol. Chem. 274, 32015–32022 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Schimpl, M. et al. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis. Nat. Chem. Biol. 8, 969–974 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lazarus, M.B. et al. HCF-1 is cleaved in the active site of O-GlcNAc transferase. Science 342, 1235–1239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vosseller, K. et al. O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry. Mol. Cell. Proteomics 5, 923–934 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Cole, R.N. & Hart, G.W. Cytosolic O-glycosylation is abundant in nerve terminals. J. Neurochem. 79, 1080–1089 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wells, L. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol. Cell. Proteomics 1, 791–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Khidekel, N. et al. Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. Nat. Chem. Biol. 3, 339–348 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Chalkley, R.J., Thalhammer, A., Schoepfer, R. & Burlingame, A.L. Identification of protein O-GlcNAcylation sites using electron transfer dissociation mass spectrometry on native peptides. Proc. Natl. Acad. Sci. USA 106, 8894–8899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hahne, H. et al. Proteome wide purification and identification of O-GlcNAc-modified proteins using click chemistry and mass spectrometry. J. Proteome Res. 12, 927–936 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Trinidad, J.C. et al. Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol. Cell. Proteomics 11, 215–229 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hahne, H., Gholami, A.M. & Kuster, B. Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Mol. Cell. Proteomics 11, 843–850 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alfaro, J.F. et al. Tandem mass spectrometry identifies many mouse brain O-GlcNAcylated proteins including EGF domain-specific O-GlcNAc transferase targets. Proc. Natl. Acad. Sci. USA 109, 7280–7285 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schutkowski, M. et al. High-content peptide microarrays for deciphering kinase specificity and biology. Angew. Chem. Int. Edn. Engl. 43, 2671–2674 (2004).

    Article  CAS  Google Scholar 

  38. Roquemore, E.P. et al. Vertebrate lens alpha-crystallins are modified by O-linked N-acetylglucosamine. J. Biol. Chem. 267, 555–563 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Housley, M.P. et al. A PGC-1alpha-O-GlcNAc transferase complex regulates FoxO transcription factor activity in response to glucose. J. Biol. Chem. 284, 5148–5157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ball, L.E., Berkaw, M.N. & Buse, M.G. Identification of the major site of O-linked beta-N-acetylglucosamine modification in the C terminus of insulin receptor substrate-1. Mol. Cell. Proteomics 5, 313–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Klein, A.L., Berkaw, M.N., Buse, M.G. & Ball, L.E. O-linked N-acetylglucosamine modification of insulin receptor substrate-1 occurs in close proximity to multiple SH2 domain binding motifs. Mol. Cell. Proteomics 8, 2733–2745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuzwa, S.A. et al. Mapping O-GlcNAc modification sites on tau and generation of a site-specific O-GlcNAc tau antibody. Amino Acids 40, 857–868 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Wells, L., Slawson, C. & Hart, G.W. The E2F–1 associated retinoblastoma-susceptibility gene product is modified by O-GlcNAc. Amino Acids 40, 877–883 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, K. et al. Translocation of HSP27 into liver cancer cell nucleus may be associated with phosphorylation and O-GlcNAc glycosylation. Oncol. Rep. 28, 494–500 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Khidekel, N., Ficarro, S.B., Peters, E.C. & Hsieh-Wilson, L.C. Exploring the O-GlcNAc proteome: direct identification of O-GlcNAc-modified proteins from the brain. Proc. Natl. Acad. Sci. USA 101, 13132–13137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maury, J.J., Ng, D., Bi, X., Bardor, M. & Choo, A.B. Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-modified proteins. Anal. Chem. 86, 395–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Gloster, T.M. et al. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat. Chem. Biol. 7, 174–181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lazarus, M.B. et al. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat. Chem. Biol. 8, 966–968 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tvaroška, I., Kozmon, S., Wimmerova, M. & Koca, J. Substrate-assisted catalytic mechanism of O-GlcNAc transferase discovered by quantum mechanics/molecular mechanics investigation. J. Am. Chem. Soc. 134, 15563–15571 (2012).

    Article  PubMed  Google Scholar 

  50. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gay, L.M., Zheng, X. & van Aalten, D.M. Molecular recognition: O-GlcNAc transfer: size matters. Nat. Chem. Biol. 7, 134–135 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lubas, W.A. & Hanover, J.A. Functional expression of O-linked GlcNAc transferase: domain structure and substrate specificity. J. Biol. Chem. 275, 10983–10988 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Fujiki, R. et al. GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature 480, 557–560 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roquemore, E.P., Chevrier, M.R., Cotter, R.J. & Hart, G.W. Dynamic O-GlcNAcylation of the small heat shock protein alpha B-crystallin. Biochemistry 35, 3578–3586 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, Y. et al. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat. Chem. Biol. 11, 319–325 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Leavy, T.M. & Bertozzi, C.R. A high-throughput assay for O-GlcNAc transferase detects primary sequence preferences in peptide substrates. Bioorg. Med. Chem. Lett. 17, 3851–3854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu, X. et al. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase. FASEB J. 28, 3362–3372 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Gupta, R. & Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 310–322 (2002).

  59. Wang, J., Torii, M., Liu, H., Hart, G.W. & Hu, Z.Z. dbOGAP: an integrated bioinformatics resource for protein O-GlcNAcylation. BMC Bioinformatics 12, 91 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jia, C.Z., Liu, T. & Wang, Z.P. O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites. Mol. Biosyst. 9, 2909–2913 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ojida, A., Takashima, I., Kohira, T., Nonaka, H. & Hamachi, I. Turn-on fluorescence sensing of nucleoside polyphosphates using a xanthene-based Zn(II) complex chemosensor. J. Am. Chem. Soc. 130, 12095–12101 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, H.S. & Thorson, J.S. Development of a universal glycosyltransferase assay amenable to high-throughput formats. Anal. Biochem. 418, 85–88 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  68. Schüttelkopf, A.W. & van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the European Synchrotron Radiation Facility (ESRF) and Diamond Light Source for beam time and assistance. This work was funded by a Wellcome Trust Senior Research Fellowship (WT087590MA) to D.M.F.v.A.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and D.M.F.v.A. conceived the study; S.P., D.E.B. and K.R. performed the peptide assays; M.S., K.R. and D.M.F.v.A. performed structural biology; V.S.B. performed peptide synthesis; J.A. and O.A. performed MS studies; S.P., M.S., A.W.S. and D.M.F.v.A. interpreted the data; S.P., M.S. and D.M.F.v.A. wrote the manuscript.

Corresponding author

Correspondence to Daan M F van Aalten.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 OGT modifies specific sites on peptide substrates.

Peptides emerging as hits from the screen, ranked by OGT activity. The O-GlcNAc serine or threonine residue in each peptide is highlighted in red. Green shading marks peptides in which the site identified from the screen matches previous reports. Peptides derived from proteins that have been published in the literature as O-GlcNAcylated proteins (with unknown modification sites) are highlighted in blue.

Supplementary Figure 2 Individual structures for all OGT–substrate complexes including electron density maps.

Unbiased Fo-Fc difference electron density for ligands (UDP-5S-GlcNAc and peptide) contoured at 2.25 σ (a, b) or contoured at 3.5 σ after NCS averaging (c, d). E, f Previously reported OGT substrate complexes (PDB ID 4AY6, Schimpl, M. et al., Nat.Chem.Biol. 8: 969, 2012; and PDB ID 4GYY, Lazarus, M.B. et al., Nat.Chem.Biol. 8: 966-968, 2012). The entire sequence of the peptides used in the study is given; underlined residues are represented in the final model, and the amino acid in bold is the O-GlcNAc-modified serine or threonine.

Supplementary Figure 3 Tolerance of different OGT isoforms for single amino acid substitutions.

OGT activity on the reference peptide KKVPVSRA was measured with two different constructs of the enzyme possessing a different number of TPR repeats. Nucleocytoplasmic OGT (ncOGT) is the longest (full length) natural OGT isoform, whereas the truncated construct, OGT (312—1031), was used for crystallographic studies and library screening due to its increased stability. The reference peptide KKVPVSRA represents the optimal OGT hexapeptide sequon except for position −3, where Val was used in order to avoid a potential second O-GlcNAc acceptor. Two N-terminal Lys residues were added, in order to aid peptide solubility. Assay details are given in the Online Methods section. The average of three measurements is shown, with error bars depicting the s.e.m. Activity for each enzyme isoform was normalized to the reference peptide. Full-length human OGT was expressed and purified as described for the truncated construct in Schimpl, M. et al., Nat.Chem.Biol. 8: 969, 2012.

Supplementary Figure 4 List of 32 hexapeptides derived from the peptide-library hits used to generate the sequon for Figure 4.

Experimentally determined O-GlcNAc sites were analyzed for sequence similarities. Peptides were aligned by the modified serine or threonine, and the sequence truncated to include only 3 residues to the N-terminus of the GlcNAc site (“−3”) and 2 residues to the C-terminus of the site (“+2”) as dictated by the ordered binding of peptides in only these subsites from the structural data. The hexapeptides highlighted in yellow were used for the generation of the sequence logo shown in Fig. 4b.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 478 kb)

Supplementary Table 1

Peptide library sequences (XLS 134 kb)

Supplementary Data Set 1

Mass spectra for O-GlcNAc site determination of 26 peptides (PDF 3745 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, S., Alonso, J., Schimpl, M. et al. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nat Struct Mol Biol 22, 744–750 (2015). https://doi.org/10.1038/nsmb.3063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing