Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX

Subjects

Abstract

The hexameric AAA+ ring of Escherichia coli ClpX, an ATP-dependent machine for protein unfolding and translocation, functions with the ClpP peptidase to degrade target substrates. For efficient function, ClpX subunits must switch between nucleotide-loadable (L) and nucleotide-unloadable (U) conformations, but the roles of switching are uncertain. Moreover, it is controversial whether working AAA+-ring enzymes assume symmetric or asymmetric conformations. Here, we show that a covalent ClpX ring with one subunit locked in the U conformation catalyzes robust ATP hydrolysis, with each unlocked subunit able to bind and hydrolyze ATP, albeit with highly asymmetric position-specific affinities. Preventing U↔L interconversion in one subunit alters the cooperativity of ATP hydrolysis and reduces the efficiency of substrate binding, unfolding and degradation, showing that conformational switching enhances multiple aspects of wild-type ClpX function. These results support an asymmetric and probabilistic model of AAA+-ring activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP binding and subunit conformations in ring hexamers of ClpX.
Figure 2: Physical characterization of parental and BMH enzymes.
Figure 3: ATP hydrolysis.
Figure 4: Subunit-specific nucleotide binding and effects on ATP hydrolysis in BMH U-locked hexamers.
Figure 5: Binding, unfolding and degradation of protein substrate by ClpX variants.
Figure 6: ATP hydrolysis and degradation by ClpX variants containing two NPM- or BMH-modified subunits.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Baker, T.A. & Sauer, R.T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta 1823, 15–28 (2012).

    Article  CAS  Google Scholar 

  2. Hersch, G.L., Burton, R.E., Bolon, D.N., Baker, T.A. & Sauer, R.T. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Cell 121, 1017–1027 (2005).

    Article  CAS  Google Scholar 

  3. Stinson, B.M. et al. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153, 628–639 (2013).

    Article  CAS  Google Scholar 

  4. Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    Article  CAS  Google Scholar 

  5. Smith, D.M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526–538 (2011).

    Article  CAS  Google Scholar 

  6. Sauer, R.T. & Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  Google Scholar 

  7. Martin, A., Baker, T.A. & Sauer, R.T. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005).

    Article  CAS  Google Scholar 

  8. Wojtyra, U.A., Thibault, G., Tuite, A. & Houry, W.A. The N-terminal zinc binding domain of ClpX is a dimerization domain that modulates the chaperone function. J. Biol. Chem. 278, 48981–48990 (2003).

    Article  CAS  Google Scholar 

  9. Popp, M.W., Antos, J.M., Grotenbreg, G.M., Spooner, E. & Ploegh, H.L. Sortagging: a versatile method for protein labeling. Nat. Chem. Biol. 3, 707–708 (2007).

    Article  CAS  Google Scholar 

  10. Kim, Y.I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).

    Article  CAS  Google Scholar 

  11. Joshi, S.A., Hersch, G.L., Baker, T.A. & Sauer, R.T. Communication between ClpX and ClpP during substrate processing and degradation. Nat. Struct. Mol. Biol. 11, 404–411 (2004).

    Article  CAS  Google Scholar 

  12. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article  CAS  Google Scholar 

  13. Taraska, J.W., Puljung, M.C., Olivier, N.B., Flynn, G.E. & Zagotta, W.N. Mapping the structure and conformational movements of proteins with transition metal ion FRET. Nat. Methods 6, 532–537 (2009).

    Article  CAS  Google Scholar 

  14. Burton, R.E., Baker, T.A. & Sauer, R.T. Energy-dependent degradation: linkage between ClpX-catalyzed nucleotide hydrolysis and protein-substrate processing. Protein Sci. 12, 893–902 (2003).

    Article  CAS  Google Scholar 

  15. Cordova, J.C. et al. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell 158, 647–658 (2014).

    Article  CAS  Google Scholar 

  16. Aubin-Tam, M.-E., Olivares, A.O., Sauer, R.T., Baker, T.A. & Lang, M.J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Article  CAS  Google Scholar 

  17. Sen, M. et al. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell 155, 636–646 (2013).

    Article  CAS  Google Scholar 

  18. Maillard, R.A. et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145, 459–469 (2011).

    Article  CAS  Google Scholar 

  19. Kenniston, J.A., Baker, T.A. & Sauer, R.T. Partitioning between unfolding and release of native domains during ClpXP degradation determines substrate selectivity and partial processing. Proc. Natl. Acad. Sci. USA 102, 1390–1395 (2005).

    Article  CAS  Google Scholar 

  20. Thibault, G. & Houry, W.A. Role of the N-terminal domain of the chaperone ClpX in the recognition and degradation of lambda phage protein O. J. Phys. Chem. B 116, 6717–6724 (2012).

    Article  CAS  Google Scholar 

  21. Lander, G.C. et al. Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186–191 (2012).

    Article  CAS  Google Scholar 

  22. Matyskiela, M.E., Lander, G.C. & Martin, A. Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781–788 (2013).

    Article  CAS  Google Scholar 

  23. Beckwith, R., Estrin, E., Worden, E.J. & Martin, A. Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA+ unfoldase. Nat. Struct. Mol. Biol. 20, 1164–1172 (2013).

    Article  CAS  Google Scholar 

  24. Chen, I., Dorr, B.M. & Liu, D.R. A general strategy for the evolution of bond-forming enzymes using yeast display. Proc. Natl. Acad. Sci. USA 108, 11399–11404 (2011).

    Article  CAS  Google Scholar 

  25. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  Google Scholar 

  26. Nørby, J.G. Coupled assay of Na+,K+-ATPase activity. Methods Enzymol. 156, 116–119 (1988).

    Article  Google Scholar 

  27. Geladopoulos, T.P., Sotiroudis, T.G. & Evangelopoulos, A.E. A malachite green colorimetric assay for protein phosphatase activity. Anal. Biochem. 192, 112–116 (1991).

    Article  CAS  Google Scholar 

  28. Lavinder, J.J., Hari, S.B., Sullivan, B.J. & Magliery, T.J. High-throughput thermal scanning: a general, rapid dye-binding thermal shift screen for protein engineering. J. Am. Chem. Soc. 131, 3794–3795 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the US National institutes of Health grant GM-101988 (R.T.S.). B.M.S. was supported by a Massachusetts Institute of Technology Poitras predoctoral fellowship. T.A.B. is supported as an employee of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

B.M.S., V.B. and K.R.S. designed experiments. B.M.S. performed experiments. B.M.S., T.A.B. and R.T.S. analyzed data and wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Robert T Sauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Data Set 1

SDS-PAGE gel shown in Figure 1e (PDF 901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stinson, B., Baytshtok, V., Schmitz, K. et al. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nat Struct Mol Biol 22, 411–416 (2015). https://doi.org/10.1038/nsmb.3012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.3012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing