Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs

This article has been updated

Abstract

MicroRNAs (miRNAs) play a major part in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with cotranscriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. Although most miRNAs are located within introns of protein-coding transcripts, a substantial minority of miRNAs originate from long noncoding (lnc) RNAs, for which transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lncRNA transcripts containing miRNAs (lnc-pri-miRNAs) do not use the canonical cleavage-and-polyadenylation pathway but instead use Microprocessor cleavage to terminate transcription. Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a new RNase III–mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: lnc-pri-miR-122 transcripts are capped but not polyadenylated.
Figure 2: 3′-end mapping, subcellular distribution and rapid turnover of lnc-pri-miR-122.
Figure 3: Microprocessor defines transcriptional termination of lnc-pri-miR-122.
Figure 4: Microprocessor depletion leads to generation of pA transcriptional readthrough products on lnc-pri-miR-122.
Figure 5: Ectopically expressed lnc-pri-miR-122 switches to CPA when Microprocessor activity is inhibited.
Figure 6: Microprocessor-dependent chromatin RNA–seq profiles across pri-miRNAs from HeLa cells.
Figure 7: Microprocessor-dependent termination prevents transcriptional interference.
Figure 8: lnc-pri-miRNA may be CPA incompetent or competent after Microprocessor depletion.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 12 March 2015

    In the version of this article initially published online, the title 'Microprocessor mediates transcriptional termination in genes encoding long noncoding microRNAs' should have read 'Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs'. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010).

    CAS  PubMed  Google Scholar 

  3. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ha, M. & Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15, 509–524 (2014).

    CAS  PubMed  Google Scholar 

  6. Ruby, J.G., Jan, C.H. & Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie, M. et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155, 1568–1580 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632–5638 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, Y.K. & Kim, V.N. Processing of intronic microRNAs. EMBO J 26, 775–783 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Baskerville, S. & Bartel, D.P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sundaram, G.M. et al. ‘See-saw’ expression of microRNA-198 and FSTL1 from a single transcript in wound healing. Nature 495, 103–106 (2013).

    CAS  PubMed  Google Scholar 

  13. Proudfoot, N.J. Ending the message: poly(A) signals then and now. Genes Dev. 25, 1770–1782 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mandel, C.R. et al. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444, 953–956 (2006).

    CAS  PubMed  Google Scholar 

  15. West, S., Gromak, N. & Proudfoot, N.J. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432, 522–525 (2004).

    CAS  PubMed  Google Scholar 

  16. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    CAS  PubMed  Google Scholar 

  17. Zhang, Z., Fu, J. & Gilmour, D.S. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19, 1572–1580 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Z. & Gilmour, D.S. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol. Cell 21, 65–74 (2006).

    CAS  PubMed  Google Scholar 

  19. Kawauchi, J., Mischo, H., Braglia, P., Rondon, A. & Proudfoot, N.J. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev. 22, 1082–1092 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rondón, A.G., Mischo, H.E., Kawauchi, J. & Proudfoot, N.J. Fail-safe transcriptional termination for protein-coding genes in S. cerevisiae. Mol. Cell 36, 88–98 (2009).

    PubMed  PubMed Central  Google Scholar 

  21. El Hage, A., Koper, M., Kufel, J. & Tollervey, D. Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast. Genes Dev. 22, 1069–1081 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghazal, G. et al. Yeast RNase III triggers polyadenylation-independent transcription termination. Mol. Cell 36, 99–109 (2009).

    CAS  PubMed  Google Scholar 

  23. Chang, J. et al. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol. 1, 106–113 (2004).

    CAS  PubMed  Google Scholar 

  24. Esau, C. et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006).

    CAS  PubMed  Google Scholar 

  25. Elmén, J. et al. LNA-mediated microRNA silencing in non-human primates. Nature 452, 896–899 (2008).

    PubMed  Google Scholar 

  26. Jopling, C.L., Yi, M., Lancaster, A.M., Lemon, S.M. & Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581 (2005).

    CAS  PubMed  Google Scholar 

  27. Li, Z.Y. et al. Positive regulation of hepatic miR-122 expression by HNF4α. J. Hepatol. 55, 602–611 (2011).

    CAS  PubMed  Google Scholar 

  28. Chien, C.H. et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 39, 9345–9356 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, I.X. et al. RNA-DNA differences are generated in human cells within seconds after RNA exits polymerase II. Cell Reports 6, 906–915 (2014).

    CAS  PubMed  Google Scholar 

  30. Gromak, N. et al. Drosha regulates gene expression independently of RNA cleavage function. Cell Reports 5, 1499–1510 (2013).

    CAS  PubMed  Google Scholar 

  31. Greger, I.H., Aranda, A. & Proudfoot, N. Balancing transcriptional interference and initiation on the GAL7 promoter of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 8415–8420 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Prescott, E.M. & Proudfoot, N.J. Transcriptional collision between convergent genes in budding yeast. Proc. Natl. Acad. Sci. USA 99, 8796–8801 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ribas, J. et al. A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Res. 40, 6821–6833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bracht, J., Hunter, S., Eachus, R., Weeks, P. & Pasquinelli, A.E. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 10, 1586–1594 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wagschal, A. et al. Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150, 1147–1157 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolev, N.G., Yario, T.A., Benson, E. & Steitz, J.A. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation. EMBO Rep. 9, 1013–1018 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Steinmetz, E.J., Conrad, N.K., Brow, D.A. & Corden, J.L. RNA-binding protein Nrd1 directs poly(A)-independent 3′-end formation of RNA polymerase II transcripts. Nature 413, 327–331 (2001).

    CAS  PubMed  Google Scholar 

  38. Arigo, J.T., Eyler, D.E., Carroll, K.L. & Corden, J.L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006).

    CAS  PubMed  Google Scholar 

  39. Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15, 795–804 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Baillat, D. et al. Integrator, a multiprotein mediator of small nuclear RNA processing, associates with the C-terminal repeat of RNA polymerase II. Cell 123, 265–276 (2005).

    CAS  PubMed  Google Scholar 

  41. O'Reilly, D. et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res. 42, 264–275 (2014).

    CAS  PubMed  Google Scholar 

  42. Kim, M. et al. Distinct pathways for snoRNA and mRNA termination. Mol. Cell 24, 723–734 (2006).

    CAS  PubMed  Google Scholar 

  43. Skourti-Stathaki, K., Proudfoot, N.J. & Gromak, N. Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol. Cell 42, 794–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Auyeung, V.C., Ulitsky, I., McGeary, S.E. & Bartel, D.P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Conrad, T., Marsico, A., Gehre, M. & Orom, U.A. Microprocessor activity controls differential miRNA biogenesis in vivo. Cell Reports 9, 542–554 (2014).

    CAS  PubMed  Google Scholar 

  46. Wilusz, J.E., Freier, S.M. & Spector, D.L. 3′ end processing of a long nuclear-retained noncoding RNA yields a tRNA-like cytoplasmic RNA. Cell 135, 919–932 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Almada, A.E., Wu, X., Kriz, A.J., Burge, C.B. & Sharp, P.A. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499, 360–363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ntini, E. et al. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol. 20, 923–928 (2013).

    CAS  PubMed  Google Scholar 

  49. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tilgner, H. et al. Deep sequencing of subcellular RNA fractions shows splicing to be predominantly co-transcriptional in the human genome but inefficient for lncRNAs. Genome Res. 22, 1616–1625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mogilyansky, E. & Rigoutsos, I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 20, 1603–1614 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sperber, H. et al. miRNA sensitivity to Drosha levels correlates with pre-miRNA secondary structure. RNA 20, 621–631 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dye, M.J. & Proudfoot, N.J. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3, 371–378 (1999).

    CAS  PubMed  Google Scholar 

  54. Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3, 1077–1084 (2008).

    CAS  PubMed  Google Scholar 

  55. Dye, M.J., Gromak, N. & Proudfoot, N.J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849–859 (2006).

    CAS  PubMed  Google Scholar 

  56. West, S., Proudfoot, N.J. & Dye, M.J. Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol. Cell 29, 600–610 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lamble, S. et al. Improved workflows for high throughput library preparation using the transposome-based nextera system. BMC Biotechnol. 13, 104 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    CAS  PubMed  Google Scholar 

  59. Flicek, P. et al. Ensembl 2014. Nucleic Acids Res. 42, D749–D755 (2014).

    CAS  PubMed  Google Scholar 

  60. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kent, W.J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, L., Duff, M.O., Graveley, B.R., Carmichael, G.G. & Chen, L.L. Genomewide characterization of non-polyadenylated RNAs. Genome Biol. 12, R16 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Proudfoot laboratory for advice and encouragement. This work was supported by a Programme grant (091805/Z/10/Z) from the Wellcome Trust, a European Research Council Advanced Award (339270-polyloop) to N.J.P. and a Biotechnology and Biological Sciences Research Council David Phillips Fellowship (BB/F02360X/1) to C.L.J. High-throughput sequencing was performed by the Genomics group at The Oxford Wellcome Centre for Human Genetics.

Author information

Authors and Affiliations

Authors

Contributions

A.D. and C.L.J. performed molecular biology experiments; S.D. performed bioinformatics analysis; A.D., N.J.P. and C.L.J. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Nick J Proudfoot or Catherine L Jopling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Distribution of miRNAs between lncRNA and protein-coding genes.

Pie chart showing distribution of human miRNA between protein coding and lncRNA genes. To the right, lncRNA miRNA genes are further subdivided into intergenic (lincRNA) or other less well-characterized subdivisions such as pseudogene or antisense.

Supplementary Figure 2 Mapped 3′ ends of lnc-pri-miR-122.

Sequencing results of lnc-pri-miR-122 3’RACE products amplified by poly(A) polymerase dependent method. Red arrow head marks the 3’ end cleavage sites based on sequence analysis.

Supplementary Figure 3 Microprocessor but not Dicer is required for lnc-pri-miRNA-122 transcription termination.

a. Chromatin-associated Huh7 RNA was analyzed by RT-qPCR as in Fig. 3a. b. Pol II ChIP and qPCR analysis of lnc-pri-miR-122 following DGCR8 depletion in Huh7 cells. Positions of the primers are indicated on the gene map above. Error bars represent s.d. of an average (n=3 independent experiments).

Supplementary Figure 4 Microprocessor depletion leads to transcriptional readthrough on MIR17HG but not MIRLET7BHG.

a. Chromatin RNA-seq profile for the MIR17HG locus following Drosha or DGCR8 depletion in HeLa cells. b. Chromatin RNA-seq profile for the MIRLET7BHG locus following Drosha or DGCR8 depletion.

Supplementary Figure 5 Dicer depletion does not lead to transcriptional readthrough on lnc-pri-miRNA.

a. Western blot showing effective Dicer depletion by siRNA transfection in HeLa cells. b. Chromatin RNA-seq profiles for MIR181A1HG and LINC00472 following DGCR8 or Dicer depletion in HeLa cells.

Supplementary Figure 6 Effect of Microprocessor knockdown on levels of TSS transcripts in genes containing miRNAs in HeLa cells.

a. and b. TSS metagene plot of chromatin RNA-seq of lnc-pri-miRNA versus protein coding genes harboring miRNA showing region

1 kb before and after TSS. TSS denotes transcription start site.

Supplementary Figure 7 Scatter plots showing reproducibility of replicate chromatin RNA–seq in HeLa cells.

a. Replicate of control siRNA treated samples. b. Replicate of DGCR8 siRNA treated samples.

Supplementary Figure 8 Additional views of GPC5 chromatin RNA–seq profiles.

a. Compressed view showing full extent of MIR17HG-GPC5 transcription unit. b. Magnified view of GPC5 exon 1 following Microprocessor knockdown in HeLa cells. Coding sequence (CDS) that translates first 55 amino acids of the GPC5 protein is located in exon 1 and is denoted by bracket. HeLa cell RNA employed. Direction of transcription indicated by green arrows.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1–6 (PDF 1572 kb)

Supplementary Data Set 1

Uncropped gels (PDF 25494 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhir, A., Dhir, S., Proudfoot, N. et al. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 22, 319–327 (2015). https://doi.org/10.1038/nsmb.2982

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2982

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing