Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway

Abstract

Inactivation of cell-survival factors is a crucial step in apoptosis. The phosphoinositide 3-kinase (PI3K)-AKT signaling pathway promotes cell growth, proliferation and survival, and its deregulation causes cancer. How this pathway is suppressed to promote apoptosis is poorly understood. Here we report the identification of a CED-3 caspase substrate in Caenorhabditis elegans, CNT-1, that is cleaved during apoptosis to generate an N-terminal phosphoinositide-binding fragment (tCNT-1). tCNT-1 translocates from the cytoplasm to the plasma membrane and blocks AKT binding to phosphatidylinositol (3,4,5)-trisphosphate, thereby disabling AKT activation and its prosurvival activity. Our findings reveal a new mechanism that negatively regulates AKT cell signaling to promote apoptosis and that may restrict cell growth and proliferation in normal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cloning and characterization of cps-2.
Figure 2: Cleavage of CNT-1 by CED-3 in vitro and in vivo.
Figure 3: Cleavage of CNT-1 by CED-3 activates its proapoptotic activity.
Figure 4: CNT-1 acts downstream of AGE-1 but upstream of AKT-1, AKT-2 and SGK-1 to promote apoptosis.
Figure 5: CED-3–activated PI binding of CNT-1 blocks PIP3 binding by AKT and SGK kinases.
Figure 6: PIP3 binding activity of tCNT-1a is two orders of magnitude greater than that of AKT-1.
Figure 7: CED-3–dependent translocation of CNT-1 to the plasma membrane blocks AKT-1 membrane recruitment.
Figure 8: A model of CED-3–activated suppression of AKT signaling by CNT-1 in C. elegans.

Similar content being viewed by others

References

  1. Steller, H. Mechanisms and genes of cellular suicide. Science 267, 1445–1449 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Crawford, E.D. & Wells, J.A. Caspase substrates and cellular remodeling. Annu. Rev. Biochem. 80, 1055–1087 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Rudel, T. & Bokoch, G.M. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276, 1571–1574 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Metzstein, M.M., Stanfield, G.M. & Horvitz, H.R. Genetics of programmed cell death in C. elegans: past, present and future. Trends Genet. 14, 410–416 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Nakagawa, A., Shi, Y., Kage-Nakadai, E., Mitani, S. & Xue, D. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science 328, 327–334 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Breckenridge, D.G. et al. Caenorhabditis elegans drp-1 and fis-2 regulate distinct cell-death execution pathways downstream of ced-3 and independent of ced-9. Mol. Cell 31, 586–597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, Y.Z., Mapes, J., Lee, E.S., Skeen-Gaar, R.R. & Xue, D. Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nat. Commun. 4, 2726 (2013).

    Article  PubMed  Google Scholar 

  8. Cully, M., You, H., Levine, A.J. & Mak, T.W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 6, 184–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Luo, J., Manning, B.D. & Cantley, L.C. Targeting the PI3K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4, 257–262 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Staal, S.P., Hartley, J.W. & Rowe, W.P. Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma. Proc. Natl. Acad. Sci. USA 74, 3065–3067 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Vivanco, I. & Sawyers, C.L. The phosphatidylinositol 3-Kinase–AKT pathway in human cancer. Nat. Rev. Cancer 2, 489–501 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBβ). Science 292, 1728–1731 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Hers, I., Vincent, E.E. & Tavare, J.M. Akt signalling in health and disease. Cell. Signal. 23, 1515–1527 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Finch, C.E. & Ruvkun, G. The genetics of aging. Annu. Rev. Genomics Hum. Genet. 2, 435–462 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell 120, 449–460 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Wolff, S. & Dillin, A. The trifecta of aging in Caenorhabditis elegans. Exp. Gerontol. 41, 894–903 (2006).

    Article  PubMed  Google Scholar 

  18. Kimura, K.D., Tissenbaum, H.A., Liu, Y. & Ruvkun, G. daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Morris, J.Z., Tissenbaum, H.A. & Ruvkun, G. A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 382, 536–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Wolkow, C.A., Munoz, M.J., Riddle, D.L. & Ruvkun, G. Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J. Biol. Chem. 277, 49591–49597 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Paradis, S., Ailion, M., Toker, A., Thomas, J.H. & Ruvkun, G.A. PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev. 13, 1438–1452 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Paradis, S. & Ruvkun, G. Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev. 12, 2488–2498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hertweck, M., Gobel, C. & Baumeister, R. C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev. Cell 6, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, K., Dorman, J.B., Rodan, A. & Kenyon, C. daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278, 1319–1322 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Ogg, S. et al. The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994–999 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, R.Y., Hench, J. & Ruvkun, G. Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr. Biol. 11, 1950–1957 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lin, K., Hsin, H., Libina, N. & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat. Genet. 28, 139–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Gil, E.B., Malone Link, E., Liu, L.X., Johnson, C.D. & Lees, J.A. Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc. Natl. Acad. Sci. USA 96, 2925–2930 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mihaylova, V.T., Borland, C.Z., Manjarrez, L., Stern, M.J. & Sun, H. The PTEN tumor suppressor homolog in Caenorhabditis elegans regulates longevity and dauer formation in an insulin receptor-like signaling pathway. Proc. Natl. Acad. Sci. USA 96, 7427–7432 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ogg, S. & Ruvkun, G. The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol. Cell 2, 887–893 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Rouault, J.P. et al. Regulation of dauer larva development in Caenorhabditis elegans by daf-18, a homologue of the tumour suppressor PTEN. Curr. Biol. 9, 329–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Dorman, J.B., Albinder, B., Shroyer, T. & Kenyon, C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141, 1399–1406 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Larsen, P.L., Albert, P.S. & Riddle, D.L. Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 139, 1567–1583 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Quevedo, C., Kaplan, D.R. & Derry, W.B. AKT-1 regulates DNA-damage-induced germline apoptosis in C. elegans. Curr. Biol. 17, 286–292 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Parrish, J. et al. Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412, 90–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Parrish, J.Z. & Xue, D. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol. Cell 11, 987–996 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Stanfield, G.M. & Horvitz, H.R. The ced-8 gene controls the timing of programmed cell deaths in C. elegans. Mol. Cell 5, 423–433 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Kokel, D., Li, Y., Qin, J. & Xue, D. The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nat. Chem. Biol. 2, 338–345 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Conradt, B. & Horvitz, H.R. The C. elegans protein EGL-1 is required for programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93, 519–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Xue, D., Shaham, S. & Horvitz, H.R. The Caenorhabditis elegans cell-death protein CED-3 is a cysteine protease with substrate specificities similar to those of the human CPP32 protease. Genes Dev. 10, 1073–1083 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Park, W.S. et al. Comprehensive identification of PIP3-regulated PH domains from C. elegans to H. sapiens by model prediction and live imaging. Mol. Cell 30, 381–392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tullet, J.M. et al. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132, 1025–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Isakoff, S.J. et al. Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J. 17, 5374–5387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parent, C.A., Blacklock, B.J., Froehlich, W.M., Murphy, D.B. & Devreotes, P.N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Meili, R. et al. Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J. 18, 2092–2105 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Servant, G. et al. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287, 1037–1040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fayard, E., Tintignac, L.A., Baudry, A. & Hemmings, B.A. Protein kinase B/Akt at a glance. J. Cell Sci. 118, 5675–5678 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, X., Senechal, K., Neshat, M.S., Whang, Y.E. & Sawyers, C.L. The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc. Natl. Acad. Sci. USA 95, 15587–15591 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kuo, Y.C. et al. Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55α regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J. Biol. Chem. 283, 1882–1892 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Padmanabhan, S. et al. A PP2A regulatory subunit regulates C. elegans insulin/IGF-1 signaling by modulating AKT-1 phosphorylation. Cell 136, 939–951 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao, T., Furnari, F. & Newton, A.C. PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol. Cell 18, 13–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Brognard, J., Sierecki, E., Gao, T. & Newton, A.C. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms. Mol. Cell 25, 917–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Cheng, G.Z. et al. Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr. Cancer Drug Targets 8, 2–6 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang, X. et al. C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat. Cell Biol. 9, 541–549 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Perrin, A.J. et al. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways. Cell Death Differ. 20, 97–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gu, T., Orita, S. & Han, M. Caenorhabditis elegans SUR-5, a novel but conserved protein, negatively regulates LET-60 Ras activity during vulval induction. Mol. Cell. Biol. 18, 4556–4564 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tabara, H. et al. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123–132 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Derry (Hospital for Sick Children) for anti–AKT-1 antibodies, M. Han (University of Colorado) for some RNAi clones, Y. Kohara (Japan National Institute of Genetics) for akt-1 cDNA, M. Valencia and Y. Shi for making some of the constructs, S. Mitani (Tokyo Women's Medical University) and G. Ruvkun (Massachusetts General Hospital) for strains, R.R. Skeen-Gaar for assistance in generating transgenic strains and B.L. Harry, T. Blumenthal, B. Olwin, and J.M. Espinosa for comments on the manuscript. Some of the worm strains used in this study were kindly provided by the Caenorhabditis Genetics Center, which is funded by the US National Institutes of Health. This work was supported by US National Institutes of Health (grants R01 GM59083, R01 GM79097 and R01 GM088241 to D.X.).

Author information

Authors and Affiliations

Authors

Contributions

A.N. and D.X. conceived the research and designed experiments. A.N. carried out and analyzed experiments. K.D.S. assisted in some experiments. A.N. and D.X. wrote the paper.

Corresponding author

Correspondence to Ding Xue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Analyses of the cps-2(sm8) mutant and anti–CNT-1 antibodies.

(a) Embryonic cell corpses were scored in the indicated animals. The y axis represents the average number of cell corpses and error bars are S.D. “ex” indicates an extrachromosomal array carrying the indicated construct. Statistical significance values were determined by two-way ANOVA, followed by Bonferroni comparison (n = 15 embryos). *, P < 0.001. All other points had P > 0.05. (b) RT-PCR analysis of N2 and cps-2(sm8) animals. Primer sets used for PCR are indicated with arrowheads in the cartoon. Left panel shows cnt-1 and right panel shows rpl-26 as a control. (c) Immunoblotting of N2 and cps-2(sm8) animals. Left panel is probed with anti-CNT-1 antibody and right panel is probed with anti-α-tubulin antibody. (d) Immunoblotting of recombinant GST-tCNT-1a and GST-tCNT-1b. Left panel is probed with anti-CNT-1 antibody and right panel is probed with anti-GST antibody. (e) The uncropped image of α-tubulin blot shown in Fig. 2c.

Supplementary Figure 2 CNT-1 cleavage by CED-3 is required for its proapoptotic function.

Supplementary Figure 3 Further analysis of the roles of AKT kinase genes, age-1 and daf-16 in C. elegans cell death.

Cell corpses were scored in the indicated strains. The y axis represents average number of cell corpses scored and error bars represent S.D. Statistical significance values were determined by two-way ANOVA, followed by Bonferroni comparison (n = 15 embryos for each stage). *, P < 0.001; **, P < 0.05.

Supplementary Figure 4 Analyses of the importance of AKT-1 and AKT-2 kinase activities and CNT-1 in cell death in C. elegans.

Cell corpses were scored in the indicated strains. The y axis represents average number of cell corpses scored and error bars represent S.D. Statistical significance values were determined by two-way ANOVA, followed by Bonferroni comparison (n = 15 embryos for each stage). *, P < 0.001.

Supplementary Figure 5 Expression levels of CNT-1a(K284A) and tCNT-1a(K284A) are comparable to those of wild-type proteins both in vitro and in vivo.

(a) Autoradiogram of GST-CNT-1a, GST-CNT-1a(K284A), GST-tCNT-1a, and GST-tCNT-1a(K284A) synthesized in rabbit reticulocyte lysate and labeled with 35S-Methionine (*). (b) Immunoblotting of worm lysates using an anti-CNT-1 antibody. Ten transgenic animals of the indicated genotype for each lane were subjected to immunoblotting.

Supplementary Figure 6 The expression level of CNT-1 in C. elegans is higher than that of AKT-1.

(a) Left, immunoblotting of 100 N2 embryos at 1.5-fold stage and 1 pmol of GST-CNT-1a purified from bacteria using an anti-CNT-1 antibody. Right, quantification of the relative CNT-1 amount, which was determined from 3 independent experiments, including the one shown in the left panel, as described in Supplementary Fig. 2d. The data are presented as relative CNT-1 amount (CNT-1a+CNT-1b) and S.D. (b) Left, immunoblotting of 100 N2 embryos at 1.5-fold stage and 1 pmol of AKT-1-His6 purified from bacteria using an anti-AKT-1 antibody. Right, the relative AKT-1 amount was determined as in a. Please see Online Methods for detail. Statistical significance values were determined by two-tailed Student’s t-test (n = 3 independent experiments). *, P < 0.001 (a). P > 0.05 (b).

Supplementary Figure 7 Analyses of CNT-1 protein localization in various embryos.

(a-f) The CNT-1 protein is expressed in all cells during embryogenesis. Embryos with the indicated genotype and developmental stage were stained with an anti-CNT-1 antibody. FITC (left) and DIC (right) images are shown. (g-l) CED-3 uncleavable form of CNT-1a does not translocate to the plasma membrane after activation of CED-3 and apoptosis. Transgenic or non-transgenic embryos with the indicated genotype were stained with an anti-CNT-1 antibody. In all panels, -HS, no heat-shock treatment. +HS, with heat-shock treatment. Scale bars represent 10 mm.

Supplementary Figure 8 The cnt-1(tm2313) deletion does not affect life span or thermotolerance.

Animals with the indicated genotype were subjected to either life span analysis (a) or heat stress resistance analysis (b) (see Online Methods).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–5 and Supplementary Note (PDF 2803 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, A., Sullivan, K. & Xue, D. Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. Nat Struct Mol Biol 21, 1082–1090 (2014). https://doi.org/10.1038/nsmb.2915

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2915

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing