Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

DNA methylation: old dog, new tricks?

Subjects

Abstract

DNA methylation is an epigenetic modification that is generally associated with repression of transcription initiation at CpG-island promoters. Here we argue that, on the basis of recent high-throughput genomic and proteomic screenings, DNA methylation can also have different outcomes, including activation of transcription. This is evidenced by the fact that transcription factors can interact with methylated DNA sequences. Furthermore, in certain cellular contexts, genes containing methylated promoters are highly transcribed. Interestingly, this uncoupling between methylated DNA and repression of transcription seems to be particularly evident in germ cells and pluripotent cells. Thus, contrary to previous assumptions, DNA methylation is not exclusively associated with repression of transcription initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Models of transcriptional regulation by DNA methylation.
Figure 2: Schematic representation of the different classes of DNA-binding domains that have been implicated in C, mC and hmC binding: CXXC15,34,36, MBD34,36,53,54, SRA34,36,54,58, forkhead box or winged helix34,36, C2H2 zinc finger22,34,36,37,40,44,83, helix-turn-helix (homeobox)34,36, basic leucine zipper36,41 and helix-loop-helix8,37,84.

Similar content being viewed by others

References

  1. Ramsahoye, B.H. et al. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc. Natl. Acad. Sci. USA 97, 5237–5242 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    PubMed  PubMed Central  Google Scholar 

  3. Jurkowska, R.Z., Jurkowski, T.P. & Jeltsch, A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 12, 206–222 (2011).

    CAS  PubMed  Google Scholar 

  4. Arand, J. et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet. 8, e1002750 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang, G. et al. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22, 480–491 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Iguchi-Ariga, S.M. & Schaffner, W. CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3, 612–619 (1989).

    CAS  PubMed  Google Scholar 

  7. Campanero, M.R., Armstrong, M.I. & Flemington, E.K. CpG methylation as a mechanism for the regulation of E2F activity. Proc. Natl. Acad. Sci. USA 97, 6481–6486 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Prendergast, G.C. & Ziff, E.B. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251, 186–189 (1991).

    CAS  PubMed  Google Scholar 

  9. Blattler, A. & Farnham, P.J. Cross-talk between site-specific transcription factors and DNA methylation states. J. Biol. Chem. 288, 34287–34294 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakker, J., Lin, X. & Nelson, W.G. Methyl-CpG binding domain protein 2 represses transcription from hypermethylated -class glutathione S-transferase gene promoters in hepatocellular carcinoma cells. J. Biol. Chem. 277, 22573–22580 (2002).

    CAS  PubMed  Google Scholar 

  11. Jiang, C.L. et al. MBD3L1 and MBD3L2, two new proteins homologous to the methyl-CpG-binding proteins MBD2 and MBD3: characterization of MBD3L1 as a testis-specific transcriptional repressor. Genomics 80, 621–629 (2002).

    CAS  PubMed  Google Scholar 

  12. Baubec, T. et al. Methylation-dependent and -independent genomic targeting principles of the MBD protein family. Cell 153, 480–492 (2013). In this paper, a correlation between genome-wide MBD binding and mCpG density is shown.

    CAS  PubMed  Google Scholar 

  13. Curradi, M. et al. Molecular mechanisms of gene silencing mediated by DNA methylation. Mol. Cell. Biol. 22, 3157–3173 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Huff, J.T. & Zilberman, D. Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156, 1286–1297 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Thomson, J.P. et al. CpG islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 464, 1082–1086 (2010). This is the first paper showing that nonmethylated CpG-rich sequences recruit CXXC domain–containing activator proteins.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Farcas, A.M. et al. KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. Elife 1, e00205 (2012).

    PubMed  PubMed Central  Google Scholar 

  17. Blackledge, N.P. et al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell 157, 1445–1459 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kass, S.U., Landsberger, N. & Wolffe, A.P. DNA methylation directs a time-dependent repression of transcription initiation. Curr. Biol. 7, 157–165 (1997).

    CAS  PubMed  Google Scholar 

  19. Jones, P.L. et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19, 187–191 (1998).

    CAS  PubMed  Google Scholar 

  20. Defossez, P.A. & Stancheva, I. Biological functions of methyl-CpG-binding proteins. Prog. Mol. Biol. Transl. Sci. 101, 377–398 (2011).

    CAS  PubMed  Google Scholar 

  21. Bogdanovicć, O. & Veenstra, G.J. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118, 549–565 (2009).

    Google Scholar 

  22. Filion, G.J. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 26, 169–181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Laget, S. et al. The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. PLoS ONE 5, e11982 (2010).

    PubMed  PubMed Central  Google Scholar 

  24. Laherty, C.D. et al. Histone deacetylases associated with the mSin3 corepressor mediate Mad transcriptional repression. Cell 89, 349–356 (1997).

    CAS  PubMed  Google Scholar 

  25. Nagy, L. et al. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89, 373–380 (1997).

    CAS  PubMed  Google Scholar 

  26. Lyst, M.J. et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat. Neurosci. 16, 898–902 (2013).

    CAS  PubMed  Google Scholar 

  27. Le Guezennec, X. et al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties. Mol. Cell. Biol. 26, 843–851 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ng, H.H. et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat. Genet. 23, 58–61 (1999).

    CAS  PubMed  Google Scholar 

  29. Dong, S.M. et al. Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin. Cancer Res. 7, 1982–1986 (2001).

    CAS  PubMed  Google Scholar 

  30. Kang, S.H. et al. Transcriptional repression of the transforming growth factor- type I receptor gene by DNA methylation results in the development of TGF- resistance in human gastric cancer. Oncogene 18, 7280–7286 (1999).

    CAS  PubMed  Google Scholar 

  31. Chiurazzi, P. et al. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum. Mol. Genet. 7, 109–113 (1998).

    CAS  PubMed  Google Scholar 

  32. Robert, M.F. et al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat. Genet. 33, 61–65 (2003).

    CAS  PubMed  Google Scholar 

  33. Bartels, S.J. et al. A SILAC-based screen for methyl-CpG binding proteins identifies RBP-J as a DNA methylation and sequence-specific binding protein. PLoS ONE 6, e25884 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bartke, T. et al. Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 143, 470–484 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mittler, G., Butter, F. & Mann, M. A SILAC-based DNA protein interaction screen that identifies candidate binding proteins to functional DNA elements. Genome Res. 19, 284–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Spruijt, C.G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013). In this paper, a comprehensive catalog of readers for mC and hmC in different cell types is presented.

    CAS  PubMed  Google Scholar 

  37. Hu, S. et al. DNA methylation presents distinct binding sites for human transcription factors. Elife 2, e00726 (2013). This paper reveals that a large number of transcription factors interact with DNA sequences containing methylated CpGs.

    PubMed  PubMed Central  Google Scholar 

  38. Liu, Y. et al. Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res. 42, 4859–4867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lewitzky, M. & Yamanaka, S. Reprogramming somatic cells towards pluripotency by defined factors. Curr. Opin. Biotechnol. 18, 467–473 (2007).

    CAS  PubMed  Google Scholar 

  40. Liu, Y. et al. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 26, 2374–2379 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rishi, V. et al. CpG methylation of half-CRE sequences creates C/EBPα binding sites that activate some tissue-specific genes. Proc. Natl. Acad. Sci. USA 107, 20311–20316 (2010). This paper shows that the transcription factor C/EBPα binds to a methylated CRE sequence to activate transcription during differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sasai, N., Nakao, M. & Defossez, P.A. Sequence-specific recognition of methylated DNA by human zinc-finger proteins. Nucleic Acids Res. 38, 5015–5022 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mackay, D.J. et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 40, 949–951 (2008).

    CAS  PubMed  Google Scholar 

  44. Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44, 361–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Brinkman, A.B. et al. Sequential ChIP-bisulfite sequencing enables direct genome-scale investigation of chromatin and DNA methylation cross-talk. Genome Res. 22, 1128–1138 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Münzel, M. et al. Quantification of the sixth DNA base hydroxymethylcytosine in the brain. Angew. Chem. Int. Edn Engl. 49, 5375–5377 (2010).

    Google Scholar 

  49. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Maiti, A. et al. TDG excision of fC may be a predominant element of pathways for active DNA demethylation. FASEB J. 27, 758.6 (2013).

    Google Scholar 

  51. Wu, H. & Zhang, Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 156, 45–68 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Iurlaro, M. et al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation. Genome Biol. 14, R119 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Mellén, M. et al. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Hashimoto, H. et al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res. 40, 4841–4849 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Valinluck, V. et al. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res. 32, 4100–4108 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Khrapunov, S. et al. Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity. Biochemistry 53, 3379–3391 (2014).

    CAS  PubMed  Google Scholar 

  57. Yildirim, O. et al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147, 1498–1510 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Frauer, C. et al. Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE 6, e21306 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhou, T. et al. Structural basis for hydroxymethylcytosine recognition by the SRA domain of UHRF2. Mol. Cell 54, 879–886 (2014).

    CAS  PubMed  Google Scholar 

  60. Booth, M.J. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336, 934–937 (2012).

    CAS  PubMed  Google Scholar 

  61. Li, Y., Song, C.X., He, C. & Jin, P. Selective capture of 5-hydroxymethylcytosine from genomic DNA. J. Vis. Exp. 68, e4441 (2012).

    Google Scholar 

  62. Song, C.X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ogoshi, K. et al. Genome-wide profiling of DNA methylation in human cancer cells. Genomics 98, 280–287 (2011).

    CAS  PubMed  Google Scholar 

  64. Aran, D. et al. Replication timing-related and gene body-specific methylation of active human genes. Hum. Mol. Genet. 20, 670–680 (2011).

    CAS  PubMed  Google Scholar 

  65. Hellman, A. & Chess, A. Gene body-specific methylation on the active X chromosome. Science 315, 1141–1143 (2007).

    CAS  PubMed  Google Scholar 

  66. Jjingo, D. et al. On the presence and role of human gene-body DNA methylation. Oncotarget 3, 462–474 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Maunakea, A.K. et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466, 253–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hogart, A. et al. Genome-wide DNA methylation profiles in hematopoietic stem and progenitor cells reveal overrepresentation of ETS transcription factor binding sites. Genome Res. 22, 1407–1418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hon, G.C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Xie, W. et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153, 1134–1148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kulis, M. et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat. Genet. 44, 1236–1242 (2012).

    CAS  PubMed  Google Scholar 

  73. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hammoud, S.S. et al. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell 15, 239–253 (2014). This paper shows that many methylated CpG-island promoters in male germ cells are actively transcribed.

    CAS  PubMed  Google Scholar 

  75. Bogdanovic, O. et al. Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Res. 21, 1313–1327 (2011). This paper reveals a temporal uncoupling between CpG-island methylation and repression of transcription during early Xenopus laevis development.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Fouse, S.D. et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation. Cell Stem Cell 2, 160–169 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Baubec, T. & Schubeler, D. Genomic patterns and context specific interpretation of DNA methylation. Curr. Opin. Genet. Dev. 25, 85–92 (2014).

    CAS  PubMed  Google Scholar 

  78. Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).

    CAS  PubMed  Google Scholar 

  79. Boyes, J. & Bird, A. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11, 327–333 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsieh, C.L. Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14, 5487–5494 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lu, Y. et al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells. Cell Stem Cell 15, 192–101 (2014).

    Google Scholar 

  82. Tao, J. et al. Phosphorylation of MeCP2 at Serine 80 regulates its chromatin association and neurological function. Proc. Natl. Acad. Sci. USA 106, 4882–4887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Donaldson, N.S. et al. Kaiso regulates Znf131-mediated transcriptional activation. Exp. Cell Res. 316, 1692–1705 (2010).

    CAS  PubMed  Google Scholar 

  84. Solomon, D.L., Amati, B. & Land, H. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers. Nucleic Acids Res. 21, 5372–5376 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank O. Bogdanovic, A. Brinkman, S. Kloet and A. Smits for critical reading of the manuscript. The Vermeulen laboratory is supported by grants from the Netherlands Organisation for Scientific Research (NWO-VIDI (no. 864.09.003) and Cancer Genomics Netherlands) and a European Research Council starting grant (no. 309384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michiel Vermeulen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spruijt, C., Vermeulen, M. DNA methylation: old dog, new tricks?. Nat Struct Mol Biol 21, 949–954 (2014). https://doi.org/10.1038/nsmb.2910

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2910

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing