Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4

Abstract

Correct localization of membrane proteins is essential to all cells. Chaperone cascades coordinate the capture and handover of substrate proteins from the ribosomes to the target membranes, yet the mechanistic and structural details of these processes remain unclear. Here we investigate the conserved GET pathway, in which the Get4–Get5 complex mediates the handover of tail-anchor (TA) substrates from the cochaperone Sgt2 to the Get3 ATPase, the central targeting factor. We present a crystal structure of a yeast Get3–Get4–Get5 complex in an ATP-bound state and show how Get4 primes Get3 by promoting the optimal configuration for substrate capture. Structure-guided biochemical analyses demonstrate that Get4-mediated regulation of ATP hydrolysis by Get3 is essential to efficient TA-protein targeting. Analogous regulation of other chaperones or targeting factors could provide a general mechanism for ensuring effective substrate capture during protein biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Get4–5 prefers ATP-bound state of Get3.
Figure 2: 5.4-Å crystal structure of an ATP-bound Get3–Get4–5 complex.
Figure 3: Get3-Get4 binding interfaces.
Figure 4: Get4–5 regulates Get3 ATPase activity.
Figure 5: A working model for Get4–5.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Shao, S. & Hegde, R.S. Membrane protein insertion at the endoplasmic reticulum. Annu. Rev. Cell Dev. Biol. 27, 25–56 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kutay, U., Hartmann, E. & Rapoport, T.A. A class of membrane proteins with a C-terminal anchor. Trends Cell Biol. 3, 72–75 (1993).

    CAS  PubMed  Google Scholar 

  3. Kutay, U., Ahnert-Hilger, G., Hartmann, E., Wiedenmann, B. & Rapoport, T.A. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane. EMBO J. 14, 217–223 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Borgese, N., Gazzoni, I., Barberi, M., Colombo, S. & Pedrazzini, E. Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol. Biol. Cell 12, 2482–2496 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Borgese, N., Brambillasca, S. & Colombo, S. How tails guide tail-anchored proteins to their destinations. Curr. Opin. Cell Biol. 19, 368–375 (2007).

    CAS  PubMed  Google Scholar 

  6. Stefanovic, S. & Hegde, R.S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007).

    CAS  PubMed  Google Scholar 

  7. Favaloro, V., Spasic, M., Schwappach, B. & Dobberstein, B. Distinct targeting pathways for the membrane insertion of tail-anchored (TA) proteins. J. Cell Sci. 121, 1832–1840 (2008).

    CAS  PubMed  Google Scholar 

  8. Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    CAS  PubMed  Google Scholar 

  9. Schuldiner, M. et al. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 134, 634–645 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jonikas, M.C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Battle, A., Jonikas, M.C., Walter, P., Weissman, J.S. & Koller, D. Automated identification of pathways from quantitative genetic interaction data. Mol. Syst. Biol. 6, 379 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Chartron, J.W., Clemons, W.M. Jr. & Suloway, C.J. The complex process of GETting tail-anchored membrane proteins to the ER. Curr. Opin. Struct. Biol. 22, 217–224 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Suloway, C.J., Chartron, J.W., Zaslaver, M. & Clemons, W.M. Jr. Model for eukaryotic tail-anchored protein binding based on the structure of Get3. Proc. Natl. Acad. Sci. USA 106, 14849–14854 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mateja, A. et al. The structural basis of tail-anchored membrane protein recognition by Get3. Nature 461, 361–366 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bozkurt, G. et al. Structural insights into tail-anchored protein binding and membrane insertion by Get3. Proc. Natl. Acad. Sci. USA 106, 21131–21136 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu, J., Li, J., Qian, X., Denic, V. & Sha, B. The crystal structures of yeast Get3 suggest a mechanism for tail-anchored protein membrane insertion. PLoS ONE 4, e8061 (2009).

    PubMed  PubMed Central  Google Scholar 

  17. Yamagata, A. et al. Structural insight into the membrane insertion of tail-anchored proteins by Get3. Genes Cells 15, 29–41 (2010).

    CAS  PubMed  Google Scholar 

  18. Suloway, C.J., Rome, M.E. & Clemons, W.M. Jr. Tail-anchor targeting by a Get3 tetramer: the structure of an archaeal homologue. EMBO J. 31, 707–719 (2012).

    CAS  PubMed  Google Scholar 

  19. Mukhopadhyay, R., Ho, Y.S., Swiatek, P.J., Rosen, B.P. & Bhattacharjee, H. Targeted disruption of the mouse Asna1 gene results in embryonic lethality. FEBS Lett. 580, 3889–3894 (2006).

    CAS  PubMed  Google Scholar 

  20. Mariappan, M. et al. The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61–66 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Stefer, S. et al. Structural basis for tail-anchored membrane protein biogenesis by the Get3-receptor complex. Science 333, 758–762 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, F., Whynot, A., Tung, M. & Denic, V. The mechanism of tail-anchored protein insertion into the ER membrane. Mol. Cell 43, 738–750 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamamoto, Y. & Sakisaka, T. Molecular machinery for insertion of tail-anchored membrane proteins into the endoplasmic reticulum membrane in mammalian cells. Mol. Cell 48, 387–397 (2012).

    CAS  PubMed  Google Scholar 

  24. Wang, F., Brown, E.C., Mak, G., Zhuang, J. & Denic, V. A chaperone cascade sorts proteins for posttranslational membrane insertion into the endoplasmic reticulum. Mol. Cell 40, 159–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chartron, J.W., Gonzalez, G.M. & Clemons, W.M. Jr. A structural model of the Sgt2 protein and its interactions with chaperones and the Get4/Get5 complex. J. Biol. Chem. 286, 34325–34334 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chartron, J.W., Suloway, C.J., Zaslaver, M. & Clemons, W.M. Jr. Structural characterization of the Get4/Get5 complex and its interaction with Get3. Proc. Natl. Acad. Sci. USA 107, 12127–12132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang, Y.W. et al. Crystal structure of Get4-Get5 complex and its interactions with Sgt2, Get3, and Ydj1. J. Biol. Chem. 285, 9962–9970 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chartron, J.W., Vandervelde, D.G., Rao, M. & Clemons, W.M. Jr. The Get5 carboxyl terminal domain is a novel dimerization motif that tethers an extended Get4/Get5 complex. J. Biol. Chem. 287, 8310–8317 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang, Y.W. et al. Interaction surface and topology of Get3-Get4-Get5 protein complex, involved in targeting tail-anchored proteins to endoplasmic reticulum. J. Biol. Chem. 287, 4783–4789 (2012).

    CAS  PubMed  Google Scholar 

  31. Rome, M.E., Rao, M., Clemons, W.M. Jr. & Shan, S.O. Precise timing of ATPase activation drives targeting of tail-anchored proteins. Proc. Natl. Acad. Sci. USA 110, 7666–7671 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X., Rashid, R., Wang, K. & Shan, S.O. Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328, 757–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Ataide, S.F. et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 331, 881–886 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    CAS  PubMed  Google Scholar 

  35. Battye, T.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  38. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brunger, A.T. Version 1.2 of the Crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    CAS  PubMed  Google Scholar 

  42. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).

    CAS  PubMed  Google Scholar 

  45. Pettersen, E.F. et al. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  46. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. & McCammon, J.A. Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037–10041 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Dolinsky, T.J., Nielsen, J.E., McCammon, J.A. & Baker, N.A. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to V. Denic (Harvard University) for providing the Δget3 Δget5 yeast strain. We thank G. Card, A. Gonzalez and M. Soltis for help with data collection at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 12-2. We are grateful to G. Moore and B. Moore for support of the Molecular Observatory at the California Institute of Technology. Operations at the SSRL are supported by the US Department of Energy and US National Institutes of Health (NIH). This work was supported by career awards from the David and Lucile Packard Foundation and the Henry Dreyfus Foundation (S.S.), US National Science Foundation Graduate Research Fellowship DGE-1144469 (M.E.R.), NIH training grant 5T32GM007616-33 (H.B.G. and M.R.) and NIH research grant R01GM097572 (W.M.C. Jr.).

Author information

Authors and Affiliations

Authors

Contributions

H.B.G. performed all experiments except those noted. M.R. performed Get4 inhibition studies, and M.E.R. performed translocation experiments, both supervised by S.S. J.W.C. initiated the project and aided in refinement. S.S. contributed to experimental design and interpretation. W.M.C. Jr. conceived and supervised the project. H.B.G. and W.M.C. Jr. wrote the manuscript. All authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to William M Clemons Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Representative ITC isotherms for nucleotide-dependent complex formation.

(a) Representative measurements for Get3 in various nucleotide states. Raw data are shown in the top panel of each trial represented as the power input into the sample cell over time. Integrated data are shown in the bottom panels in terms of the total energy required for equilibration as a function of the molar ratio of Get4-5N:Get3. The solid line represents the best-fit model used to calculate affinities. The affinities indicated for each nucleotide state are the average from at least three experiments. In all experiments Get4-5N was titrated into the sample cell containing Get3. (b) Representative measurements for Get3 mutants from the Anchoring interface, top, or the Regulatory interface, bottom. The indicated affinity for each mutant represents the value obtained from a single experiment carried out in the presence of ATP. (c) Representative measurements for Get4 mutants from the various interfaces as in (b).

Supplementary Figure 2 Surface properties of Get3 and Get4.

(a) Left, Surface representation of closed Get3 dimer (gray) from (b) showing Get4 binding site (blue), Get1 cytoplasmic domain binding site (yellow) and the overlap (green). Right, Similar surface representation highlighting the Get4 binding site (blue), Get2 cytoplasmic domain binding site (red) and the overlap (brown). (b) Left, orientation of Get3 used in subsequent panels to highlight the binding interfaces. Monomers are colored as in Figure 2. For surface representations one monomer is outlined in black and dashed lines (blue) highlight the interaction surface of Get4 on Get3. Center, accessible surface color ramped based on electrostatic potential from -12 kT/e (red) to +12 kT/e (blue). Get5N colored gray. Right, accessible surface color ramped based on conservation from ≤50% (white) to ≥90% (purple). Get5N colored gray. Coloring is based on a ClustalW 34 alignment using the following sequences: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus fumigatus, Candida albicans, Pichia pastoris, Nematostella vectensis, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Xenopus laevis, Mus musculus, Homo sapiens, Arabidopsis thaliana, Neurospora crassa, Anolis carolinensis. (c) Surface properties of Get4 as in (b), except Get4 is color-ramped from N-terminus (blue) to C-terminus (red).

Supplementary Figure 3 Stereo views of the Get3D-Get4–5N interface.

(a) The Get3D-Get4 interface. Coloring is the same as in Figure 3a. Get3 Lys69 and Get4 Asp74 are highlighted by open arrowheads. (b) 2FO-FC Electron density contoured at 1.5σ highlighting the Get3D-Get4 interface.

Supplementary Figure 4 TA targeting assay.

(a) Representative autoradiograph images used to calculate Get3 translocation efficiency corresponding to Figure 4b for wildtype (Top) and K69D (Bottom). (b) Comparison of Get3 translocation efficiencies in Δget3 and Δget3/Δmdy2 lysates. (c) Representative autoradiograph images used to calculate Get3 translocation efficiencies for Δget3/Δmdy2 lysate in (b).

Supplementary Figure 5 Tetramers of Get3.

(a) Tetramers of Get3 seen in various crystal forms with Get3 dimers similar to Figure 5a,b. Each is highlighted with the archaeal Get3 (Methanocaldococcus jannaschii) from PDB ID 3UG6, the Get2-Get3 complex from PDB ID 3SJD, and the Get3D-Get4-5N crystal structure. (b) Stereo view of the 2Fo-Fc density contoured at 1.5σ showing the loops involved in formation of the Get3D-Get4-5N complex tetramer. (c) Comparison of the Archaeal MjGet3 dimer aligned to one dimer of the Get3D-Get4-5N complex dimer.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 64948 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gristick, H., Rao, M., Chartron, J. et al. Crystal structure of ATP-bound Get3–Get4–Get5 complex reveals regulation of Get3 by Get4. Nat Struct Mol Biol 21, 437–442 (2014). https://doi.org/10.1038/nsmb.2813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2813

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing