Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Plant ubiquitin ligases as signaling hubs

The past decade has witnessed an explosion in the identification of ubiquitin-ligase complexes as the missing receptors for important small-molecule hormones regulating plant growth and development. These breakthroughs were initiated by genetic approaches, with structural analysis providing mechanistic insights into how hormone perception and signaling are coupled to protein ubiquitination. Although there are still many unknowns, plants have imparted valuable lessons about the pharmacology of ubiquitin modification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The general modular architecture of CRLs and SCF E3 ligase complexes.
Figure 2: Plant cullin–RING ligases and mechanisms for hormone-dependent substrate recognition.
Figure 3: A strategy for plant hormone–inspired drug discovery.

References

  1. Goldstein, G. et al. Proc. Natl. Acad. Sci. USA 72, 11–15 (1975).

    Article  CAS  Google Scholar 

  2. Hershko, A. & Ciechanover, A. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  3. Kim, D.Y., Scalf, M., Smith, L.M. & Vierstra, R.D. Plant Cell 25, 1523–1540 (2013).

    Article  CAS  Google Scholar 

  4. Hua, Z. & Vierstra, R.D. Annu. Rev. Plant Biol. 62, 299–334 (2011).

    Article  CAS  Google Scholar 

  5. Kraft, E. et al. Plant Physiol. 139, 1597–1611 (2005).

    Article  CAS  Google Scholar 

  6. Hua, Z., Zou, C., Shiu, S.H. & Vierstra, R.D. PLoS ONE 6, e16219 (2011).

    Article  CAS  Google Scholar 

  7. Serino, G. & Deng, X.W. Annu. Rev. Plant Biol. 54, 165–182 (2003).

    Article  CAS  Google Scholar 

  8. Lau, O.S. & Deng, X.W. Trends Plant Sci. 17, 584–593 (2012).

    Article  CAS  Google Scholar 

  9. Lyapina, S. et al. Science 292, 1382–1385 (2001).

    Article  CAS  Google Scholar 

  10. Santner, A., Calderon-Villalobos, L.I. & Estelle, M. Nat. Chem. Biol. 5, 301–307 (2009).

    Article  CAS  Google Scholar 

  11. Leyser, H.M. et al. Nature 364, 161–164 (1993).

    Article  CAS  Google Scholar 

  12. Dharmasiri, N. & Estelle, M. Trends Plant Sci. 9, 302–308 (2004).

    Article  CAS  Google Scholar 

  13. Dharmasiri, N., Dharmasiri, S. & Estelle, M. Nature 435, 441–445 (2005).

    Article  CAS  Google Scholar 

  14. Kepinski, S. & Leyser, O. Nature 435, 446–451 (2005).

    Article  CAS  Google Scholar 

  15. Skaar, J.R., Pagan, J.K. & Pagano, M. Nat. Rev. Mol. Cell Biol. 14, 369–381 (2013).

    Article  CAS  Google Scholar 

  16. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. & Turner, J.G. Science 280, 1091–1094 (1998).

    Article  CAS  Google Scholar 

  17. Browse, J. Annu. Rev. Plant Biol. 60, 183–205 (2009).

    Article  CAS  Google Scholar 

  18. Sun, T.P. Curr. Biol. 21, R338–R345 (2011).

    Article  CAS  Google Scholar 

  19. Domagalska, M.A. & Leyser, O. Nat. Rev. Mol. Cell Biol. 12, 211–221 (2011).

    Article  CAS  Google Scholar 

  20. Jiang, L. et al. Nature 504, 401–405 (2013).

    Article  CAS  Google Scholar 

  21. Wang, Y. et al. Dev. Cell 27, 681–688 (2013).

    Article  CAS  Google Scholar 

  22. Zhou, F. et al. Nature 504, 406–410 (2013).

    Article  CAS  Google Scholar 

  23. Stanga, J.P., Smith, S.M., Briggs, W.R. & Nelson, D.C. Plant Physiol. 163, 318–330 (2013).

    Article  CAS  Google Scholar 

  24. Nelson, D.C. et al. Proc. Natl. Acad. Sci. USA 108, 8897–8902 (2011).

    Article  CAS  Google Scholar 

  25. Fu, Z.Q. et al. Nature 486, 228–232 (2012).

    Article  CAS  Google Scholar 

  26. Dong, X. Curr. Opin. Plant Biol. 7, 547–552 (2004).

    Article  CAS  Google Scholar 

  27. Tan, X. et al. Nature 446, 640–645 (2007).

    Article  CAS  Google Scholar 

  28. Sheard, L.B. et al. Nature 468, 400–405 (2010).

    Article  CAS  Google Scholar 

  29. Calderón Villalobos, L.I. et al. Nat. Chem. Biol. 8, 477–485 (2012).

    Article  Google Scholar 

  30. Murase, K., Hirano, Y., Sun, T.P. & Hakoshima, T. Nature 456, 459–463 (2008).

    Article  CAS  Google Scholar 

  31. Shimada, A. et al. Nature 456, 520–523 (2008).

    Article  CAS  Google Scholar 

  32. Krönke, J. et al. Science 343, 301–305 (2014).

    Article  Google Scholar 

  33. Lu, G. et al. Science 343, 305–309 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.Z. is supported as a Howard Hughes Medical Institute Investigator, with additional support provided by the US National Institutes of Health (R01-CA107134) and National Science Foundation (0929100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shabek, N., Zheng, N. Plant ubiquitin ligases as signaling hubs. Nat Struct Mol Biol 21, 293–296 (2014). https://doi.org/10.1038/nsmb.2804

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2804

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing