Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Poly-combing the genome for RNA

An unresolved question in mammalian epigenetic regulation is how ubiquitously expressed chromatin-modifying complexes such as Polycomb group complex 2 (PRC2) find their specific target sites across an intricate choreography of localization events in time and space. Two recent studies now provide critical new insights into an intriguing genome-wide role for RNA in PRC2 regulation.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed models for PRC2-RNA interactions.
Figure 2: The effect of RNA binding on PRC2 activity.

References

  1. Mendenhall, E.M. et al. PLoS Genet. 6, e1001244 (2010).

    Article  Google Scholar 

  2. Ringrose, L., Rehmsmeier, M., Dura, J.M. & Paro, R. Dev. Cell 5, 759–771 (2003).

    Article  CAS  Google Scholar 

  3. Rinn, J.L. et al. Cell 129, 1311–1323 (2007).

    Article  CAS  Google Scholar 

  4. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J. & Lee, J.T. Science 322, 750–756 (2008).

    Article  CAS  Google Scholar 

  5. Koziol, M.J. & Rinn, J.L. Curr. Opin. Genet. Dev. 20, 142–148 (2010).

    Article  CAS  Google Scholar 

  6. Wang, K.C. & Chang, H.Y. Mol. Cell 43, 904–914 (2011).

    Article  CAS  Google Scholar 

  7. Guttman, M. et al. Nature 477, 295–300 (2011).

    Article  CAS  Google Scholar 

  8. Khalil, A.M. et al. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).

    Article  CAS  Google Scholar 

  9. Zhao, J. et al. Mol. Cell 40, 939–953 (2010).

    Article  CAS  Google Scholar 

  10. Davidovich, C., Zheng, L., Goodrich, K.J. & Cech, T.R. Nat. Struct. Mol. Biol. 20, 1250–1257 (2013).

    Article  CAS  Google Scholar 

  11. Kaneko, S., Son, J., Shen, S.S., Reinberg, D. & Bonasio, R. Nat. Struct. Mol. Biol. 20, 1258–1264 (2013).

    Article  CAS  Google Scholar 

  12. Margueron, R. et al. Nature 461, 762–767 (2009).

    Article  CAS  Google Scholar 

  13. Engreitz, J.M. et al. Science 341, 1237973 (2013).

    Article  Google Scholar 

  14. Maenner, S. et al. PLoS Biol. 8, e1000276 (2010).

    Article  Google Scholar 

  15. Simon, M.D. et al. Nature, doi:10.1038/nature12719 (27 October 2013).

  16. Ulitsky, I. & Bartel, D.P. Cell 154, 26–46 (2013).

    Article  CAS  Google Scholar 

  17. Guttman, M. & Rinn, J.L. Nature 482, 339–346 (2012).

    Article  CAS  Google Scholar 

  18. Di Ruscio, A. et al. Nature, doi:10.1038/nature12598 (9 October 2013).

  19. Sun, S. et al. Cell 153, 1537–1551 (2013).

    Article  CAS  Google Scholar 

  20. Rinn, J.L. & Chang, H.Y. Annu. Rev. Biochem. 81, 145–166 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L Rinn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goff, L., Rinn, J. Poly-combing the genome for RNA. Nat Struct Mol Biol 20, 1344–1346 (2013). https://doi.org/10.1038/nsmb.2728

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2728

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing