Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of EF-G–ribosome complex in a pretranslocation state

A Corrigendum to this article was published on 04 March 2015

This article has been updated

Abstract

In protein synthesis, elongation factor G (EF-G) facilitates movement of tRNA–mRNA by one codon, which is coupled to the ratchet-like rotation of the ribosome complex and is triggered by EF-G–mediated GTP hydrolysis. Here we report the structure of a pretranslocational ribosome bound to Thermus thermophilus EF-G trapped with a GTP analog. The positioning of the catalytic His87 into the active site coupled to hydrophobic-gate opening involves the 23S rRNA sarcin-ricin loop and domain III of EF-G and provides a structural basis for the GTPase activation of EF-G. Interactions of the hybrid peptidyl-site–exit-site tRNA with ribosomal elements, including the entire L1 stalk and proteins S13 and S19, shed light on how formation and stabilization of the hybrid tRNA is coupled to head swiveling and body rotation of the 30S as well as to closure of the L1 stalk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of EF-G bound to the 70S ribosome in the pretranslocation state.
Figure 2: The active site and switch I of EF-G.
Figure 3: Interactions of domain IV of EF-G with the ribosome and deformation at the decoding site.
Figure 4: Positioning of the P/E tRNA and its interaction with the ribosome.
Figure 5: Superposition of the present EF-G structure with the structure of isolated EF-G bound to a GTP analog.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 12 January 2015

    In view of the differences between our findings reported in this study and in Tourigny et al. (Science 340, 1235490, 2013), we have rerefined the structure with Refmac (Murshudov, G.N. et al., Acta Crystallogr. D Biol. Crystallogr. 67, 355–367, 2011). This resulted in better statistics and revealed that the structure contained tRNAPhe in the P/E site, as in Tourigny et al., and not tRNAfMet as we had originally interpreted. (Both tRNAfMet and tRNAPhe had been included for crystallization.) Thus, the structure reported here is essentially identical to that reported in Tourigny et al., and we thank D. S. Tourigny, G. Murshudov and V. Ramakrishnan for alerting us about this issue after they had rerefined our data with Refmac. We have updated the coordinates accordingly (PDB 4CR1) and made the following corrections: (i) on pages 1078 and page 1080, tRNAfMet was changed to tRNAPhe; (ii) on page 1081, including Figure 4b, A43 was changed to C43, and A43-U27 was changed to C43-G27; (iii) on page 1082, G42 was changed to C42. The text and Figure 4 have been updated to reflect the revised information as of 12 January 2015.

References

  1. Moazed, D. & Noller, H.F. Intermediate states in the movement of transfer RNA in the ribosome. Nature 342, 142–148 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Frank, J. & Agrawal, R.K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Rodnina, M.V., Savelsbergh, A., Katunin, V.I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Connell, S.R. et al. Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. Mol. Cell 25, 751–764 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Schuette, J.C. et al. GTPase activation of elongation factor EF-Tu by the ribosome during decoding. EMBO J. 28, 755–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Villa, E. et al. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Voorhees, R.M., Schmeing, T.M., Kelley, A.C. & Ramakrishnan, V. The mechanism for activation of GTP hydrolysis on the ribosome. Science 330, 835–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liljas, A., Ehrenberg, M. & Aqvist, J. Comment on “The mechanism for activation of GTP hydrolysis on the ribosome”. Science 333, 37 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Jin, H., Kelley, A.C. & Ramakrishnan, V. Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc. Natl. Acad. Sci. USA 108, 15798–15803 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou, J., Lancaster, L., Trakhanov, S. & Noller, H.F. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA 18, 230–240 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Valle, M. et al. Locking and unlocking of ribosomal motions. Cell 114, 123–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, D.J. et al. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation. EMBO J. 26, 2421–2431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Selmer, M., Gao, Y.G., Weixlbaumer, A. & Ramakrishnan, V. Ribosome engineering to promote new crystal forms. Acta Crystallogr. D Biol. Crystallogr. 68, 578–583 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao, Y.G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trabuco, L.G. et al. The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. J. Mol. Biol. 402, 741–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lill, R., Robertson, J.M. & Wintermeyer, W. Binding of the 3′ terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation. EMBO J. 8, 3933–3938 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fei, J. et al. Allosteric collaboration between elongation factor G and the ribosomal L1 stalk directs tRNA movements during translation. Proc. Natl. Acad. Sci. USA 106, 15702–15707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorner, S., Brunelle, J.L., Sharma, D. & Green, R. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Nat. Struct. Mol. Biol. 13, 234–241 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ratje, A.H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dunkle, J.A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 A resolution. Science 334, 1524–1529 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Jenner, L., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural rearrangements of the ribosome at the tRNA proofreading step. Nat. Struct. Mol. Biol. 17, 1072–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Czworkowski, J., Wang, J., Steitz, T.A. & Moore, P.B. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 13, 3661–3668 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hansson, S., Singh, R., Gudkov, A.T., Liljas, A. & Logan, D.T. Structural insights into fusidic acid resistance and sensitivity in EF-G. J. Mol. Biol. 348, 939–949 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hausner, T.P., Atmadja, J. & Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69, 911–923 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Rambelli, F. et al. Effect of the antibiotic purpuromycin on cell-free protein-synthesizing systems. Biochem. J. 259, 307–310 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clementi, N., Chirkova, A., Puffer, B., Micura, R. & Polacek, N. Atomic mutagenesis reveals A2660 of 23S ribosomal RNA as key to EF-G GTPase activation. Nat. Chem. Biol. 6, 344–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. AEvarsson, A. et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Martemyanov, K.A. & Gudkov, A.T. Domain III of elongation factor G from Thermus thermophilus is essential for induction of GTP hydrolysis on the ribosome. J. Biol. Chem. 275, 35820–35824 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Savelsbergh, A. et al. An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. Mol. Cell 11, 1517–1523 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Savelsbergh, A., Mohr, D., Kothe, U., Wintermeyer, W. & Rodnina, M.V. Control of phosphate release from elongation factor G by ribosomal protein L7/12. EMBO J. 24, 4316–4323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Feng, S., Chen, Y. & Gao, Y.G. Crystal structure of 70S ribosome with both cognate tRNAs in the E and P sites representing an authentic elongation complex. PLoS ONE 8, e58829 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan, D., Kirillov, S., Zhang, C.M., Hou, Y.M. & Cooperman, B.S. Rapid ribosomal translocation depends on the conserved 18–55 base pair in P-site transfer RNA. Nat. Struct. Mol. Biol. 13, 354–359 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Sprinzl, M. et al. Regulation of GTPases in the bacterial translation machinery. Biol. Chem. 381, 367–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Wallin, G., Kamerlin, S.C. & Aqvist, J. Energetics of activation of GTP hydrolysis on the ribosome. Nat. Commun. 4, 1733 (2013).

    Article  PubMed  Google Scholar 

  37. Schweins, T. et al. Substrate-assisted catalysis as a mechanism for GTP hydrolysis of p21ras and other GTP-binding proteins. Nat. Struct. Biol. 2, 36–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Cukras, A.R., Southworth, D.R., Brunelle, J.L., Culver, G.M. & Green, R. Ribosomal proteins S12 and S13 function as control elements for translocation of the mRNA:tRNA complex. Mol. Cell 12, 321–328 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Cukras, A.R. & Green, R. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J. Mol. Biol. 349, 47–59 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Joseph, S. & Noller, H.F. EF-G-catalyzed translocation of anticodon stem-loop analogs of transfer RNA in the ribosome. EMBO J. 17, 3478–3483 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Agirrezabala, X. et al. Visualization of the hybrid state of tRNA binding promoted by spontaneous ratcheting of the ribosome. Mol. Cell 32, 190–197 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sengupta, J. et al. Visualization of the eEF2–80S ribosome transition-state complex by cryo-electron microscopy. J. Mol. Biol. 382, 179–187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tourigny, D.S., Fernandez, I.S., Kelley, A.C. & Ramakrishnan, V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490 (2013).

    Article  PubMed  Google Scholar 

  44. Pulk, A. & Cate, J.H. Control of ribosomal subunit rotation by elongation factor G. Science 340, 1235970 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou, J., Lancaster, L., Donohue, J.P. & Noller, H.F. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–200 (1993).

    Article  CAS  Google Scholar 

  47. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Brünger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  49. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  50. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

Download references

Acknowledgements

The mutant T. thermophilus strain was provided by V. Ramakrishnan's group, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.We thank C. Neubauer for comments on the manuscript and M. Wang for help with data collection. This work was supported by Singapore National Research Foundation NRF-RF2009-RF001-267 (Y.-G.G.) and a Nanyang Technological University Startup grant (Y.-G.G.).

Author information

Authors and Affiliations

Authors

Contributions

Y.-G.G. designed the study; Y.C., S.F. and Y.-G.G. performed the preliminary experiment; Y.C. and Y.-G.G. optimized crystallization and carried out data collection; Y.-G.G., Y.C, V.K. and R.E. performed model building, refinement and data analysis; Y.-G.G., Y.C. and R.E. wrote the manuscript.

Corresponding author

Correspondence to Yong-Gui Gao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1 and 2 (PDF 1299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Feng, S., Kumar, V. et al. Structure of EF-G–ribosome complex in a pretranslocation state. Nat Struct Mol Biol 20, 1077–1084 (2013). https://doi.org/10.1038/nsmb.2645

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2645

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing